Water Resources Data
 Florida Water Year 2000

Volume 4. Northwest Florida

By Marvin Franklin, Paul Meadows, and Ernie Alvarez

Water-Data Report FL-00-4

UNITED STATES DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary
 U. S. GEOLOGICAL SURVEY

Charles G. Groat, Director

Prepared in cooperation with the State of Florida and with other agencies as listed under cooperation

For additional information write to District Chief, Water Resources Division
U.S. Geological Survey

227 North Bronough Street, Suite 3015
Tallahassee, Florida 32301

PREFACE

This volume of the annual hydrologic data report of Florida is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Florida are contained in four volumes:

Volume 1. Northeast Florida
Volume 2. South Florida
Volume 3. Southwest Florida
Volume 4. Northwest Florida

This report was prepared for publication by Patsy R. Mixson under the supervision of M.A. Franklin, and P.E. Meadows. The following individuals contributed significantly to the collection, processing, and tabulation of the data:

A.E. Alvarez	L.D. Sloan
D.A. Blum	D.M. Stephens
G.B. Donley	G.M. Tillis
J.D. Goin	S.A.Tomlinson
P.E. Meadows	

This report was prepared in cooperation with the State of Florida and with other agencies listed on page 1.

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je.Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 .				
1. AGENCY USE ONLY (Leave blank)	$\begin{aligned} & \text { 2. REPORT DATE } \\ & \text { September } 2001 \end{aligned}$		3. REPORT TYPE AND DATES COVERED Annual-Oct. 1, 1999 thru Sept. 30, 2000	
4. TITLE AND SUBTITLE Water Resources Data, Florida, Water Year 2000 Volume 4, Northwest Florida			5. FUNDING NUMBERS	
6. AUTHOR(S) Franklin, M.A., Meadows, P.E., and Alvarez, E.				
7. PERFORMING ORGANIZATION NAM U.S. Geological Survey Water Resources Division 227 N. Bronough Street, S Tallahassee, FL 32301) AND ADDRESS(ES) 3015		8. PER	FORMING ORGANIZATION ORT NUMBER SGS-WDR-FL-00-4
9. SPONSORING / MONITORING AGE U.S. Geological Survey Water Resources Division 227 N. Bronough Street, S Tallahassee, FL 32301	NAME(S) AND ADDRESS(ES) 3015			ONSORING / MONITORING ENCY REPORT NUMBER SGS-WDR-FL-00-4
11. SUPPLEMENTARY NOTES Prepared in cooperation with the State of Florida and other agencies.				
12a. DISTRIBUTION / AVAILABILITY S No restriction on distributi National Tech Springfield,	EMENT This report may be pur cal Information Center 22161	ased from:	12b.	ISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words) This report series for the 2000 water year for the state of Florida consists of records for continuous or daily discharge for 355 streams, periodic discharge for 17 streams, continuous or daily stage for 211 streams, periodic stage for 1 stream, peak stage and discharge for 37 streams; continuous or daily elevations for 16 lakes, and periodic elevations for 45 lakes; continuous ground-water levels for 393 wells, and periodic ground-water levels for 1,003 wells; quality-of-water for 124 surface-water sites and 244 wells. This volume (Volume 4, Northwest Florida) contains records of continuous or daily discharge for 54 streams, periodic discharge for 1 stream, continuous or daily stage for 15 streams, periodic stage for 1 stream, peak stage and discharge for 30 streams; continuous or daily elevations for 1 lake, periodic elevations for 1 lake; continuous groundwater levels for 2 wells, periodic ground-water levels for 0 wells; quality-of-water for 4 surface-water sites and 0 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Florida.				
14. SUBJECT TERMS *Florida, *Hydrologic data, *Surface water, *Ground water, *Water-quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Elevations, Water wells				15. NUMBER OF PAGES 240 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	8. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATIONOF ABSTRACT		20. LIMITATION OF ABSTRACT UNCLASSIFIED
NSN 7540-01-280-5500				andard Form 298 (Rev. 2-89) escribed by ANSI Std 239-18 8-102

Figure 1. Geographic area covered by this report.

CONTENTS

Preface iii
List of Illustrations viii
List of Surface-Water Stations, in Downstream Order, for Which Records are Published ix
List of Ground-Water Wells, by County, for Which Records are Published x
List of Discontinued Surface-Water Discharge Stations xi
Introduction 1
Cooperation 1
Summary of Hydrologic Conditions 2
Rainfall 2
Surface Water 2
Ground Water 2
Water Quality 2
Special Networks and Programs 11
Explanation of the Records 12
Station Identification Numbers 13
Downstream Order System 13
Latitude-Longitude System 13
Records of Stage and Water Discharge 13
Data Collection and Computation 14
Data Presentation 15
Station Manuscript 15
Data Table of Daily Mean Values 16
Statistics of Monthly Mean Data 17
Summary Statistics 17
Accuracy of the Records 18
Other Records Available 18
Records of Surface-Water Quality 19
Classification of Records 19
Arrangement of Records 19
Onsite Measurements and Sample Collection 19
Sediment 20
Laboratory Measurements 20
Data Presentation 20
Manuscript 20
Remark Codes 21
Dissolved Trace-Element Concentrations 21
Change in National Trends Network Procedures 21
Quality-Control Data 21
Blank Samples 21
Reference Samples 22
Replicate Samples 22
Spike Samples 22
Records of Ground-Water Levels 23
Data Collection and Computation 23
Data Presentation 23
Records of Ground-Water Quality 24
Data Collection and Computation 24
Data Presentation 24
Access to USGS Water Data 24
Definition of Terms 25
Publications on Techniques of Water-Resources Investigations 37
Stage, Discharge, and Water Quality of Streams 41
Discharge at Partial-Record Stations and Miscellaneous Sites 124
Elevation of Lakes 129
Well Descriptions and Ground-Water Data 135
Miscellaneous Water Level Measurements 141
Project Data 143
Index 221

ILLUSTRATIONS

Figure 1. Geographic area covered by this report.
Figure 2. Santa Fe River near Worthington Springs (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1932-99, and (B) the monthly mean discharge for the period 1991-00.3
Figure 3. Suwannee River at Branford (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1931-99, and (B) the monthly mean discharge for the period 1991-00 4
Figure 4. Steinhatchee River near Cross City (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1950-99, and (B) the monthly mean discharge for the period 1991-00 5
Figure 5. Ochlockonee River near Havana (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1926-99, and (B) the monthly mean discharge for the period 1991-00 6
Figure 6. Chipola River near Altha (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1943-99, and (B) the monthly mean discharge for the period 1991-00 7
Figure 7. Shoal River near Crestview (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1938-99, and (B) the monthly mean discharge for the period 1991-00 8
Figure 8. Escambia River near Century (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1934-99, and (B) the monthly mean discharge for the period 1991-00 9
Figure 9. USGS Well near Wausau (A) Monthly maximum water level for the 2000 water year compared to maximum, minimum, and mean monthly maximum water levels for the period 1963-99 and (B) the monthly maximum water level for the period 1998-00 10
Figure 10. NAWQA stations in the State of Florida 12
Figure 11. System for numbering wells and miscellaneous sites (latitude and longitude) 14
Figure 12. Location of stream gaging and lake gaging stations in Northwest Florida Water Management District 42
Figure 13. Location of stream gaging stations in Suwannee River Water Management District. 42
Figure 14. Location of wells in Wakulla County 136
Figure 15. Location of wells in Washington County. 138
Figure 16. Location of stations for Suwannee Estuary Project 145

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

[Letters after station names designate type of data: (d) discharge, (dm) discharge measurements only, (c) chemical, (b) biological, (m) microbiological, (s) sediment, (t) temperature, (e) elevation, gage heights, or contents]
Station
Number Page
WACCASASSA RIVER BASIN
Waccasassa River near Gulf Hammock, FL (d) 02313700 43
SUWANNEE RIVER BASIN
Alligator Creek near Fargo, GA (e) 0231427398 44
Bay Creek Near Fargo, GA (e). 0231427399 45
Suwannee River at Sill near Fargo, GA (d,c) 02314274 46
North Fork Suwannee River at Sill near Fargo, GA (d,c) 023142741 48
Jones Creek Pond near Fargo, GA (e) 304356082321700 130
Gator Creek Dam near Fargo,GA (e) 304553082295000 131
Cypress Creek near Edith, GA (dm) 303902082315200 50
Suwannee River near Benton, FL (d,e) 02315000 51
Suwannee River at White Springs, FL (d,e) 02315500 53
Alapaha River near Jennings, FL (d,e). 02317620 55
Withlacoochee River near Pinetta, FL (d) 02319000 57
Suwannee River at Ellaville, FL (d,e) 02319500 58
Suwannee River at Dowling Park, FL (d,e) 02319800 60
Suwannee River at Luraville, FL (d,e) 02320000 62
Suwannee River at Branford, FL (d,e) 02320500 64
New River near Lake Butler, FL (d) 02321000 66
Santa Fe River at Worthington Springs, FL (d,e) 02321500 67
Santa Fe River at US Hwy 441 near High Springs, FL (d) 02321975 69
Santa Fe River near Fort White, FL (d). 02322500 70
Suwannee River near Wilcox, FL (d,e) 02323500 71
STEINHATCHEE RIVER BASIN
Steinhatchee River near Cross City, FL (d) 02324000
FENHOLLOWAY RIVER BASIN
Fenholloway River near Foley, FL (d). 0232440074
Fenholloway River near Perry, FL (d) 02325000 75
ECONFINA RIVER BASIN
Econfina River near Perry, FL (d) 0232600076
AUCILLA RIVER BASIN
Aucilla River at Lamont, FL (d,g) 0232650077
ST. MARKS RIVER BASIN
Ward Creek below Mitchell Pond near Metcalf, GA (d) 304308083555200 79
St. Marks River Near Newport, FL (d). 02326900 80
OCHLOCKONEE RIVER BASIN
Lost Creek at Arran, FL (d). 0232703381
Sopchoppy River near Sopchoppy, FL (d) 02327100 82
Ochlockonee River near Concord, FL (d) 02328522 83
Ochlockonee River near Havana, FL (d,e) 02329000 84
Lake Jackson near Tallahassee, FL (e) 02329200 132
Little River near Midway, FL (d) 02329600 86
Lake Talquin near Bloxham, FL (e) 02329900 133
Ochlockonee River near Bloxham, FL (d) 02330000 87
Telogia Creek near Bristol, FL (d) 02330100 88
Ochlockonee River near Smith Creek, FL (d) 02330150 89

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

[Letters after station names designate type of data: (d) discharge, (dm) discharge measurements only, (c) chemical, (b) biological, (m) microbiological, (s) sediment, (t) temperature, (e) elevation, gage heights, or contents]

Station
Number Page
CARRABELLE RIVER BASIN
New River near Sumatra, FL (d)... 02330400 90
APALACHICOLA RIVER BASIN
Spring Creek near Reynoldsville, GA (d).. 02357150 91
Apalachicola River at Chattahoochee, FL (d,e,s) 02358000 92
Apalachicola River near Blountstown, FL (d,e) 02358700 95
Muddy Branch near Marianna, FL (d) 02358784 97
Chipola River at Marianna, FL (d) 02358789 98
Chipola River near Altha, FL (d) 02359000
Chipola River at Cockran Landing near Wewahitchka, FL (d,e) 02359051 100
Apalachicola River near Sumatra, FL (d,e,s) 102
ECONFINA CREEK BASIN 105
Econfina Creek near Bennett, FL (d) 106
CHOCTAWHATCHEE RIVER BASIN
Choctawhatchee River near Pittman, FL (d) 02365200 107
Wrights Creek at SH 177A near Bonifay, FL (d) 02365470 108
Bruce Creek at SH 81 near Redbay, FL (d) 02365769 109
Choctawhatchee River near Bruce, FL (d) 02366500 110
ALAQUA CREEK BASIN
Alaqua Creek near Pleasant Ridge, FL (d) 02366996111
YELLOW CREEK BASIN
Yellow River near Oak Grove, FL (d) 02367900 112
Shoal River near Mossy Head (d) 02368500 113
Shoal River near Crestview, FL (d) .02369000 114
BLACKWATER RIVER BASIN
Blackwater River near Baker, FL (d) 02370000 115
Big Coldwater Creek near Milton, FL (d) .02370500 116
Pond Creek near Milton, FL (d) .02370700 117
ESCAMBIA RIVER BASIN
Escambia River near Century, FL (d) 02375500 118
Escambia River near Molino, FL (d) 02376033 119
BAYOU MARCUS CREEK BASIN
Bayou Marcus Creek near Pensacola, FL (d) 02376100 120
ELEVENMILE CREEK BASIN
Elevenmile Creek near Pensacola, FL (d). 02376115121
PERDIDO RIVER BASIN
Brushy Creek near Bratt, FL (d) .02376293 122
Perdido River at Barrineau Park, FL (d) 02376500 123
GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME
WAKULLA COUNTY
300740084293001 136
WASHINGTON COUNTY
303025085350501 138

Volume 4: Northwest Florida

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State, local, and Federal agencies, obtains a large amount of data pertaining to the water resources of Florida each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Florida."

This report series for the 2000 water year for the state of Florida consists of records for continuous or daily discharge for 355 streams, periodic discharge for 17 streams, continuous or daily stage for 211 streams, periodic stage for 1 stream, peak stage and discharge for 37 streams; continuous or daily elevations for 16 lakes, and periodic elevations for 45 lakes; continuous ground-water levels for 393 wells, and periodic ground-water levels for 1,003 wells; quality-of-water for 134 surface-water sites and 244 wells.

This volume (Volume 4, Northwest Florida) contains records of continuous or daily discharge for 54 streams, periodic discharge for 1 stream, continuous or daily stage for 15 streams, periodic stage for 1 stream, peak stage and discharge for 30 streams; continuous or daily elevations for 1 lake, periodic elevations for 1 lake; continuous ground-water levels for 2 wells, periodic ground-water levels for 0 wells; and quality-of-water for 4 surface-water sites and 0 wells.

This series of annual reports for Florida began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for Florida were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States." For the 1961 through 1970 water years, the data were published in two 5 -year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from Distribution Branch, Text products Section, U.S. Geological Survey, Branch of Information Services, Open-File Reports Section, Box 25286, Federal Center, Denver, CO 80225-00286.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report FL-99-4." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the Office Chief at the address given on the back of the title page or by telephone (850) 942-9500.

COOPERATION

The U.S. Geological Survey and agencies of the State of Florida have had cooperative agreements for the collection of water-resource records since 1930. Organizations that assisted in collecting the data in this report through cooperative agreement with the Survey are:

Florida Department of Environmental Protection
Northwest Florida Water Management District
Suwannee River Water Management District County of Walton

City of Century
City of Perry
City of Tallahassee
Corps of Engineers, U.S. Army, Mobile District

Assistance with funds or services was given by the U.S. Army Corps of Engineer, Mobile District, in collecting records for 5 hydrologic gaging stations throughout northwest Florida.

WATER RESOURCES DATA FOR FLORIDA, 2000
 Volume 4: Northwest Florida
 SUMMARY OF HYDROLOGIC CONDITIONS

Abstract

Rainfall

Rainfall across northwest Florida varied from about 16 to almost 24 in. below normal for the 2000 water year. Based on rainfall data at 5 National Oceanic and Atmospheric Administration stations, (Perry, Lake City, Tallahassee, De Funiak Springs, and Pensacola), total rainfall for the 12 -month period ranged from 36.56 in. at Perry to 44.40 in . at Tallahassee. The cumulative monthly departures for the water year ranged from - 16.34 in . at Lake City to -23.80 in. at Pensacola. The distribution of rainfall differed geographically and seasonally, with the Big Bend area around Tallahassee receiving more than average rainfall for the summer quarter (July-September). Everywhere else, rainfall was deficient for the entire year. Rainfall departures from normal during the fall quarter (October-December), one of the dryer periods, ranged from -3.73 at DeFuniak Springs to -5.77 in. at Lake City. Rainfall departures for the winter quarter (January-March), normally the wet period in northwest Florida ranged from -9.26 in. at Tallahassee to -3.69 in. at Lake City. Rainfall departures for the spring quarter (April-June) ranged from - 11.56 in. at Tallahassee to -2.40 in . at Perry. Rainfall amounts during the summer quarter (July-September), also normally a wet period, ranged from 4.94 in . above normal at Tallahassee to 8.03 in . below normal at Perry. The following summary lists cumulative rainfall and the departure from the 30-year normal (1961-90) for each of the stations.

Cumulative rainfall and departure from the 30-year normal (1961-90)

Station	October December		January - March		April - June		July - September		Water Year	
	Total Rain	Departure								
Perry	3.83	-4.88	7.00	-6.38	11.25	-2.40	14.48	-8.03	36.56	-21.69
Lake City	2.48	-5.77	9.36	-3.69	9.31	-4.93	17.15	-1.95	38.30	-16.34
Tallahassee	6.39	-5.43	7.28	-9.26	3.86	-11.56	26.87	+4.94	44.40	-21.31
De Funiak Springs	8.88	-3.73	11.32	-5.45	7.32	-7.34	16.33	-3.93	43.85	-20.45
Pensacola	8.24	-3.80	8.23	-7.48	6.16	-8.21	15.82	-4.31	38.45	-23.80

Surface Water

Annual mean streamflow for the 2000 water year in northwest Florida ranged from 8 to 76 percent of the long-term average. Flow in the upper Suwannee and Santa Fe Rivers, was the lowest (about 8 percent of normal); flow was highest in the Econfina Creek basin (76 percent of normal). Flows averaged 20 to 40 percent of normal over the northwest Florida area. Exceptions included areas with high spring discharge, which ranged from 65 to 75 percent of the long-term average, and streams with little groundwater input with flows 8 to 10 percent of the long-term average. The mean annual discharge for many streams across the area was the lowest ever observed, exceeded only by the 1955 drought for the streams that were not a record.

Discharge hydrographs for some representative streams in northwest Florida are shown in figures 2 through 8. The upper graph (A) shows the 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the previous period of record at that site. The lower graph (B) shows the monthly mean discharge for the period 1991-2000.

Ground Water

A hydrograph for the USGS well near Wausau is shown in figure 9. The upper graph (A) shows the 2000 monthly maximum water level compared to the maximum, minimum, and mean monthly maximum water level for the period 1963-99. The lower graph (B) shows the monthly maximum water level for the period 1998-2000. Water levels declined steadily from near average in October, 1999, to almost record lows in August and September, 2000.

Water Quality

Insufficient water quality data was collected in north Florida during the water year to provide any analysis of conditions that exist in the area.

Figure 2. Santa Fe River near Worthington Springs (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1932-99, and (B) the monthly mean discharge for the period 1991-2000.

Figure 3. Suwannee River at Branford (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1931-99, and (B) the monthly mean discharge for the period 1991-2000.

STEINHATCHEE RIVER NEAR CROSS CITY, FLORIDA

Figure 4. Steinhatchee River near Cross City (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1950-99, and (B) the monthly mean discharge for the period 1991-2000.

Figure 5. Ochlockonee River near Havana (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1926-99, and (B) the monthly mean discharge for the period 1991-2000.

Figure 6. Chipola River near Altha (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1943-99, and (B) the monthly mean discharge for the period 1991-2000.

Figure 7. Shoal River near Crestview (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1938-99, and (B) the monthly mean discharge for the period 1991-2000.

Figure 8. Escambia River near Century (A) 2000 monthly mean discharge compared to the maximum, minimum, and mean monthly mean discharge for the period 1934-99, and (B) the monthly mean discharge for the period 1991-2000.

Figure 9. USGS Well near Wausau (A) Monthly maximum water level for the 2000 water year compared to maximum, minimum, and mean monthly maximum water levels for the period 1963-99 and (B) the monthly maximum water level for the period 1998-2000.

Volume 4: Northwest Florida

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sed-iment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http://water.usgs.gov/nasqan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This longterm, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/.

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/nawqa_home.html

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 2000 water year that began October 1, 1999, and ended September 30, 2000. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Figure 10. NAWQA stations in the State of Florida.

Volume 4: Northwest Florida

Station Identification Numbers
Each data station, whether streamsite or well, in this report is assigned a unique identification number. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surfacewater stations and the "latitude-longitude" system is used for wells and for surface-water stations where only miscellaneous measurements are made.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete number for each station, such as 02326500 , which appears just to the left of the station name, includes the two-digit Part number " 02 " plus the 6 to 13 digit downstream-order number " 326500 ." The part number refers to an area whose boundaries coincide with natural drainage lines; for example, Part "02" is the South Atlantic Slope and eastern Gulf of Mexico basins.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1 -second grid. This site-identification number, once assigned, is a unique number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure 11, page 14.)

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a recording device through which either instantaneous or mean daily discharges may be computed for any period of time. Complete records of lake or reservoirs, similarly, are those for which stage or content may be computed for any period of time. They may be obtained using a recording device or daily readings. Because daily mean discharges or elevations commonly are published for such stations, they are referred to as "daily stations."

Location of all complete-record stations for which data are given in this report are shown in figures preceding each sub-basin.

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records."

Volume 4: Northwest Florida

Figure 11. System for numbering wells and miscellaneous sites (latitude and longitude).

Data Collection and Computation

The base data collected at gaging stations consist of records of gage heights and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of gage height are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives the fluctuations on a paper tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any gage height are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to define the extremes of discharge, they are made on the basis of indirect measurements of peak discharge; such as slope-area, contracted opening measurements, computations of flow over dams or weirs, step backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation was subjected to change because of occasional or continual change in the physical features of the control, the daily mean discharge is computed by the shiftingcontrol method, in which correction factors based on individual discharge measurements and notes by the technician are used in applying the gage-height corrections to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by the same method.

At some stream-gaging stations the stage-discharge relation is affected by backwater from streams, tides, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in determining discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by a rapid change in stage; at these stations the rate of change in stage is used as a factor in determining discharge.

At some stations there is no relation between stage and discharge because of the flat stream gradients and/or tidal fluctuations. Discharge is determined from ratings which are based on a relation between recorded velocity index unit at a fixed point and mean velocity at a fixed measuring section, and a relation between recorded stage and cross-sectional area at the measuring site.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge. This happens when the recorder stops or otherwise fails

Volume 4: Northwest Florida

to operate properly, intakes are plugged, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations. Records are published for the water year, which begins on October 1 and ends on September 30.

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that flow at it can reasonably be considered equivalent to flow at the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

Volume 4: Northwest Florida

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see Definition of Terms, page 25), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data Table of Daily Mean Values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS \qquad - \qquad , BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary Statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS \qquad - \qquad ," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.
LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.
HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.
LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.
ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7 -day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7 -day period. (This value should not be confused with the 7 -day 10 -year low-flow statistic.)
INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)

INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:
Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
Inches (INCHES) indicates the depth to which the drainage area would be covered if all the runoff for a given period were uniformly distributed on it.
10 PERCENT EXCEEDS.--The discharge that is exceeded 10 percent of the time for the designated period.
50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period.
90 PERCENT EXCEEDS.--The discharge that is exceeded 90 percent of the time for the designated period.
Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at creststage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$ for values less than $1 \mathrm{ft}^{3} / \mathrm{s}$; to the nearest tenth between 1.0 and $10 \mathrm{ft}^{3} / \mathrm{s}$; to whole numbers between 10 and $1,000 \mathrm{ft}^{3} / \mathrm{s}$; and to 3 significant figures for more than $1,000 \mathrm{ft}^{3} / \mathrm{s}$. The number of significant figures used is based solely on the magnitude of the discharge value.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge measurement notes, gageheight records, temperature measurements, and rating tables is on file in the Tallahassee office of the Florida District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Volume 4: Northwest Florida

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

Onsite Measurements and Sample Collection

In obtaining water-quality data, a major concern is assuring that the data obtained represents the quality of the water in its natural state. To assure this, certain measurements, such as water temperature, pH , and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the natural water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see Definition of Terms, page 24) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particlesize distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

Information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH , water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each complete-record station. Comments that follow clarify information presented under the various headings of the station description.

Manuscript

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.
DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.
PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.
COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.
REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

WATER RESOURCES DATA FOR FLORIDA, 2000
 Volume 4: Northwest Florida
 Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTEDOUTPUT	REMARK
E	
$>$	Estimated value Actual value is known to be greater than the value show
<	
Actual value is known to be less than the value shown	
K	Results based on colony count outside the acceptance range (non-ideal colony count) Liological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant) Analyte was detected in both the environmental sample and the associated blanks. V
Biological organism estimated as dominant	

Dissolved Trace-Element Concentrations

NOTE: Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter ($\mu \mathrm{g} / \mathrm{L}$) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10 's to 100 's of nanograms per liter (ng / L). Data above the $\mu \mathrm{g} / \mathrm{L}$ level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Change in National Trends Network Procedures

NOTE: Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643).

Quality-Control Data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

BLANK SAMPLES—Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank samples for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this District are:

Source solution blank - a blank solution that is transferred to a sample bottle in an area of the office laboratory with an atmosphere that is relatively clean and protected with respect to target analytes.

Ambient blank - a blank solution that is put in the same type of bottle used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions.

Volume 4: Northwest Florida

Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office.)

Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.
Pump blank - a blank solution that is processed through the same pump-and-tubing system used for an environmental sample.
Standpipe blank - a blank solution that is poured from the containment vessel (stand-pipe) before the pump is inserted to obtain the pump blank.
Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.
Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.
Preservation blank - a blank solution that is treated with the sampler preservatives used for an environmental sample.
Canister blank - a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field blank sample.
REFERENCE SAMPLES-Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

REPLICATE SAMPLES-Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Concurrent sample - a type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers.

Sequential sample - a type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

SPIKE SAMPLES-Spike samples are samples to which known quantities of a solution with one or more wellestablished analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Concurrent sample - a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

Volume 4: Northwest Florida

Split sample - a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

Records of Ground-Water Levels

Ground-water level data from a statewide network of wells are published herein. The records include data from wells equipped with water-level recorders and data from wells where water levels are measured periodically.

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15 -digit number that appears in the upper left corner of the table.

Water-level records are obtained from direct measurements with a steel tape, pressure gage, manometer, or from the graph or punched tape of a water-level recorder. The measurements in this report are given in feet above or below National Geodetic Vertical Datum of 1929 or in some tables as feet below land-surface datum. Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

Data Presentation

Each well record consists of three parts, the station description and the data table of water levels observed during the water year. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings of the well description.
LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); a landline location designation; the hydrologic-unit number; and the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.
WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.
INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.
DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and son on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

Volume 4: Northwest Florida

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.
PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.
EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.
A table of water levels follows the station description for each well. Water levels are reported in feet below landsurface datum and all taped measurements of water level are listed. For wells equipped with recorders, only abbreviated tables are published; generally, only water-level lows are listed for every fifth day and at the end of the month (EOM). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that, for most sampling sites, they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes, one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

Methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed at the end of the introductory text. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casing.

Data Presentation

The records of ground-water quality are published with the ground-water-level records for each county. Data for quality of ground water are identified by well number. The prime identification number for wells sampled is the 15digit number derived from the latitude-longitude locations. The Remark Codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at

Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various electronic formats. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (see address on the back of the title page).

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Algae are mostly aquatic single-celled, colonial, or multicelled plants containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters.

Cubic foot per second per square mile [CFSM, (ft 3 3/s)/ mi^{2}] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.

Inch (IN., in.) as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it.
Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type and the last two digits represent the weight percent of the hydrogen substituted chlorine.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at $35^{\circ} \mathrm{C}$. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at $35{ }^{\circ} \mathrm{C}$ plus or minus $1.0^{\circ} \mathrm{C}$ on M -Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at $44.5^{\circ} \mathrm{C}$ plus or minus $0.2^{\circ} \mathrm{C}$ on M -FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Volume 4: Northwest Florida

Fecal streptococcal bacteria are bacteria found in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at $35^{\circ} \mathrm{C}$ plus or minus $1.0^{\circ} \mathrm{C}$ on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at $41^{\circ} \mathrm{C}$ on mE agar and subsequent transfer to EIA medium. Enterococci include Streptococcus feacalis, Streptococcus feacium, Streptococcus avium, and their variants.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warm-blooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at $44.5^{\circ} \mathrm{C}$ on mTEC medium. Their concentrations are expressed as number of colonies per 100 mL of sample.
Base flow is flow in a channel sustained by ground-water discharge in the absence of direct runoff.
Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.
Benthic organisms (invertebrates) are the group of animals inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of $500^{\circ} \mathrm{C}$ for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter $\left(\mathrm{g} / \mathrm{m}^{3}\right)$, and periphyton and benthic organisms in grams per square meter ($\mathrm{g} / \mathrm{m}^{2}$).

Dry mass refers to the mass of residue present after drying in an oven at $105^{\circ} \mathrm{C}$ for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash, and sediment in the sample. Dry mass is expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.
Biomass pigment ratio is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index.

Bottom material: See "Bed material."

Cells/volume refers to the number of plankton cells or natural units counted using a microscope and grid or counting cell. Results are generally reported as cells or units per milliliter.

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume ($\mu \mathrm{m}^{3}$) is determined by obtaining critical cell measurements on cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:
sphere $4 / 3 \pi r^{3}$ cone $1 / 3 \pi r^{3} h \quad$ cylinder $\pi r^{3} h$.
From cell volume, total algal biomass expressed as biovolume ($\mu \mathrm{m}^{3} / \mathrm{mL}$) is thus determined by multiplying the

Volume 4: Northwest Florida

number of cells of a given species by its average cell volume and then summing these volumes over all species.
Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

Chlorophyll refers to the green pigments of plants. Chlorophyll a and b are the two most common green pigments in plants.

Colloid is any substance with particles in such a fine state of subdivision dispersed in a medium (for example, water) that they do not settle out; but not in so fine a state of subdivision that they can be said to be truly dissolved.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site that meets either of the following conditions:

1. Stage or streamflow are recorded at some interval on a continuous basis. The recording interval is usually 15 minutes, but may be less or more frequent.
2. Water-quality, sediment, or other hydrologic measure-ments are recorded at least daily.

Control designates a feature in the channel downstream from a gaging station that physically influences the water-surface elevation and thereby determines the stage-discharge relation at the station. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, $\mathrm{ft}^{3} / \mathrm{s}$) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second, 448.8 gallons per minute, or 0.02832 cubic meters per second.

Cubic foot per second-day (CFS-DAY, Cfs-day, $\left.\left[\left(\mathrm{ft}^{3} / \mathrm{s}\right) / \mathrm{d}\right]\right)$ is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.9835 acre-feet, 646,317 gallons, or 2,447 cubic meters.

Daily record is a summary of streamflow, sediment, or water-quality values computed from data collected with sufficient frequency to obtain reliable estimates of daily mean values.

Daily record station is a site for which daily records of streamflow, sediment, or water-quality values are computed.

Datum, as used in this report, is an elevation above mean sea level to which all gage height readings are referenced.

Diel is of or pertaining to a 24 -hour period of time; a regular daily cycle.
Discharge, or flow, is the volume of water (or more broadly, volume of fluid including solid- and dissolved-phase material), that passes a given point in a given period of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days in a year. Note that most lowflow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7 -day 10-year low-flow statistic.)

Instantaneous discharge is the discharge at a particular instant of time.
Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Volume 4: Northwest Florida

Dissolved refers to that material in a representative water sample that passes through a 0.45 -micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved oxygen (DO) content of water in equilibrium with air is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved solids, with small temperature changes having the more significant offset. Photosynthesis and respiration may cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During that analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to reflect the change. Alternatively, alkalinity concentration (as $\mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3}$) can be converted to carbonate concentration by multiplying by 0.60 .

Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$
\bar{d}=-\sum_{i \approx 1}^{s} \frac{n_{i}}{n} \log _{2} \frac{n_{i}}{n}
$$

where n_{i} is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a site on a stream is that area, measured in a horizontal plane, that has a common outlet at the site for its surface runoff. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that is occupied by a drainage system with a common outlet for its surface runoff (see "Drainage area").

Dry weight refers to the weight of animal tissue after it has been dried in an oven at $65^{\circ} \mathrm{C}$ until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue.

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90 th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is the elevation of the zero point of the reference gage from which gage height is determined as compared to sea level (see "Datum"). This elevation is established by a system of levels from known benchmarks, by approximation from topographic maps, or by geographical positioning system.

Gage height (G.H.) is the water-surface elevation referenced to the gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is computed.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Ground-water level is the elevation of the water table or another potentiometric surface at a particular location.
Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$.

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and
lower of the two high tides, respectively, of each tidal day. See NOAA web site:
http://www.co-ops.nos.noaa.gov/tideglos.html
Hydrologic benchmark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the U.S. Geological Survey. Each hydrologic unit is identified by an 8 -digit number.

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation

$$
I=I_{o} e^{-\lambda L}
$$

where I_{o} is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the lightattenuation coefficient, and e is the base of the natural logarithm. The light attenuation coefficient is defined as

$$
\lambda=-\frac{1}{L} \log _{e} \frac{I}{I_{o}}
$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site:

http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that are usually arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, $\mu \mathrm{g} / \mathrm{g}$) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, $\mu \mathrm{g} / \mathrm{kg}$) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter ($\mathrm{UG} / \mathrm{L}, \mu \mathrm{g} / \mathrm{L}$) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter.

Volume 4: Northwest Florida

Microsiemens per centimeter (US/CM, $\mu \mathrm{S} / \mathrm{cm}$) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg / L and is based on the mass of dry sediment per liter of water-sediment mixture.

Miscellaneous site, or miscellaneous station, is a site where streamflow, sediment, and/or water-quality data are collected once, or more often on a random or discontinuous basis.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place. See NOAA web site:
http://www.ngs.noaa.gov/faq.shtml\#WhatVD29VD88
Nekton are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.

Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of Formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.

Open or screened interval is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), suspended organic carbon (SOC), or total organic carbon (TOC).

Organism is any living entity.
Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter $\left(\mathrm{m}^{2}\right)$, acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.
Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter Code is a 5-digit number used in the U.S. Geological Survey computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Volume 4: Northwest Florida

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, Sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)		Method of analysis	
Clay	$0.00024-$	0.004	Sedimentation	
Silt	$.004-$.062	Sedimentation	
Sand	$.062-$	2.0	Sedimentation/sieve	
Gravel	2.0	-	64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Percent composition or percent of total is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, or volume.

Periodic station is a site where stage, discharge, sediment, chemical, or other hydrologic measurements are made one or more times during a year, but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.
$\mathbf{p H}$ of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogenion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water.

Picocurie $(\mathrm{PC}, \mathrm{pCi})$ is one trillionth $\left(1 \times 10^{-12}\right)$ of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7×10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells $/ \mathrm{mL}$ of sample).

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae.

Blue-green algae (Cyanophyta) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells $/ \mathrm{mL}$) of sample.

Euglenoids (Euglenophyta) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark.

Fire algae (Pyrrhophyta) are a group of algae that are free-swimming unicells characterized by a red pigment spot.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells $/ \mathrm{mL}$) of sample.
Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the
water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.
Polychlorinated biphenyls (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCN's) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCB's) and have been identified in commercial PCB preparations.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time $\left[\mathrm{mg} \mathrm{C} /\left(\mathrm{m}^{2} /\right.\right.$ time $\left.)\right]$ for periphyton and macrophytes or per volume $\left[\mathrm{mg} \mathrm{C} /\left(\mathrm{m}^{3} /\right.\right.$ time $\left.)\right]$ for phytoplankton. Carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time $\left[\mathrm{mg} \mathrm{O} /\left(\mathrm{m}^{2} /\right.\right.$ time $\left.)\right]$ for periphyton and macrophytes or per volume $\left[\mathrm{mg} \mathrm{O} /\left(\mathrm{m}^{3} /\right.\right.$ time $\left.)\right]$ for phytoplankton. Oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.
Radioisotopes are isotopic forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37 , and the natural mixture has an atomic weight of about 35.453 . Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or non-exceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100 -year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7 -day 10 -year low flow $\left(7 \mathrm{Q}_{10}\right)$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-

Volume 4: Northwest Florida

thirds of the non-exceedances of the $7 \mathrm{Q}_{10}$ occur less than 10 years after the previous non-exceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous non-exceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100 -year flood has a 1percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7 \mathrm{Q}_{10}$.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

River mile is the distance of a point on a river measured in miles from the river's mouth along the low-water channel.

River mileage is the linear distance along the meandering path of a stream channel determined in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council.

Runoff in inches (IN., in.) is the depth, in inches, to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sea level refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929. See: http://www.co-ops.nos.noaa.gov/glossary/gloss_n.html\#NGVD

Sediment is solid material that is transported by, suspended in, or deposited from water. It originates mostly from disintegrated rocks; it also includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along or very close to the bed. In this report, bed load is considered to consist of particles in transit from the bed to an elevation equal to the top of the bed-load sampler nozzle (usually within 0.25 ft of the streambed).

Bed-load discharge (tons per day) is the quantity of sediment moving as bed load, reported as dry weight, that passes a cross section in a given time.

Suspended sediment is the sediment that is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg / L). The entire sample is used for the analysis.

Mean concentration of suspended sediment is the time-weighted concentration of suspended sediment
passing a stream section during a 24 -hour day.
Suspended-sediment discharge (tons/day) is the quantity of sediment moving in suspension, reported as dry weight, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration $(\mathrm{mg} / \mathrm{L}) \times$ discharge $\left(\mathrm{ft}^{3} / \mathrm{s}\right) \times 0.0027$.

Suspended-sediment load is a term that refers to material in suspension. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, reported as dry weight, that passes a cross section in a given time.

Total sediment load or total load is a term that refers to the total sediment (bed load plus suspended-sediment load) that is in transport. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with total sediment discharge.
Seven-day 10-year low flow ($7 \mathrm{Q} 10,7 \mathrm{Q}_{10}$) is the minimum flow averaged over 7 consecutive days that is expected to occur on average, once in any 10-year period. The 7Q10 has a 10-percent chance of occurring in any given year.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Volume 4: Northwest Florida

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at $25^{\circ} \mathrm{C}$. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MILL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific waters, to evaluate mixing of different waters, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage: See "Gage height."
Stage-discharge relation is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.
Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms.
The artificial substrate simplifies the community structure by standardizing the substrate from which each sample
is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside
rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for
periphyton collection.
Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives.
Surface area of a lake or impoundment is that area encompassed by the boundary of the lake or impoundment as shown on USGS topographic maps, or on other available maps or photographs. The computed surface areas reflect the water levels of the lakes or impoundments at the times when the information for the maps or photographs was obtained.

Surficial bed material is the top 0.1 to 0.2 ft of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45 -micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended-sediment sample that is retained on a 0.45 -micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative suspended-sediment sample that is retained on a 0.45 -micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Volume 4: Northwest Florida

Synoptic Studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following:

Kingdom	Animal
Phylum	Arthropoda
Class	Insecta
Order.	Ephemeroptera
Family.	Ephemeridae
Genus	Hexagenia
	Hexagenia limb

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot is the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136 .

Tons per day (T/DAY, tons/d) is the rate representing a mass of 1 ton of a constituent in streamflow passing a cross section in 1 day. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the total amount of a given constituent in a representative suspended-sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a suspended-sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total recoverable is the amount of a given constituent that is in solution after a representative suspended-sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Turbidity is a measurement of the collective optical properties of a water sample that cause light to be scattered and absorbed rather than transmitted in straight lines; the higher the intensity of scattered light, the higher the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU) or Formazin turbidity units (FTU) depending on the method and equipment used.

Ultraviolet (UV) aborbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tanin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Volatile organic compounds (VOC's) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOC's are manmade chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996).

Water level is the water-surface elevation or stage of the free surface of a body of water above or below any datum (see "Gage height"), or the surface of water standing in a well, usually indicative of the position of the water table or other potentiometric surface.

Water table is the surface of a ground-water body at which the water is at atmospheric pressure.
Water-table aquifer is an unconfined aquifer within which is found the water table.
Water year in U.S. Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1999, is called the "1999 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Well is an excavation (pit, hole, tunnel), generally cylindrical in form and often walled in, drilled, dug, driven, bored, or jetted into the ground to such a depth as to penetrate water-yielding geologic material and allow the water to flow or to be pumped to the surface.

Wet weight refers to the weight of animal tissue or other substance including its contained water.
WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

Volume 4: Northwest Florida

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S.G.S. publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S.G.S., Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be made in the form of a check or money order payable to the "U.S. Geological Survey." Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

1-D1. Water temperature-influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J.F. Ficke, and G. F. Smoot: USGS-TWRI Book 1, Chapter D1. 1975. 65 pages.

1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

2-D1. Application of surface geophysics to ground-water investigations, by A.A. R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages.

2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI Book 2, Chapter D2. 1988. 86 pages.

Section E. Subsurface Geophysical Methods

2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages.
2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS-TWRI Book 2, Chapter E2. 1990. 150 pages.

Section F. Drilling and Sampling Methods

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS-TWRI Book 2, Chapter F1. 1989. 97 pages.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGSTWRI Book 3, Chapter A1. 1967. 30 pages.
3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS-TWRI Book 3, Chapter A2. 1967. 12 pages.
3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS-TWRI Book 3, Chapter A3. 1968. 60 pages.

3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.

3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI Book 3. Chapter A5. 1967. 29 pages.

Volume 4: Northwest Florida

3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS-TWRI Book 3, Chapter A6. 1968. 13 pages.

3-A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A7. 1968. 28 pages.
3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages.

3-A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS-TWRI Book 3, Chapter A9. 1989. 27 pages.

3-Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A10. 1984. 59 pages.
3-A11. Measurement of discharge by the moving-boat method, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages.
3-A12. Fluorometric procedures for dye tracing, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A12. 1986. 34 pages.
3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A13. 1983. 53 pages.

3-A14. Use offlumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS-TWRI Book 3, Chapter A14. 1983. 46 pages.
3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages.
3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI Book 3, Chapter A16. 1985. 52 pages.

3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI Book 3, Chapter A17. 1985. 38 pages.
3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI Book 3, Chapter A18. 1989. 52 pages.

3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A19. 1990. 31 pages.
3-A20. Simulation of soluable waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A20. 1993. 38 pages.
3-A21. Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI Book 3, Chapter A21. 1995. 56 pages.

Section B. Ground-Water Techniques

3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI Book 3, Chapter B1. 1971. 26 pages.

3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS-TWRI Book 3, Chapter B2. 1976. 172 pages.
3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.

3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS-TWRI Book 3, Chapter B4. 1990.232 pages.

3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI Book 3, Chapter B4. 1993. 8 pages.
3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS-TWRI Book 3, Chapter B5. 1987. 15 pages.
3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS-TWRI Book 3, Chapter B6. 1987. 28 pages.

3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS-TWRI Book 3, Chapter B7. 1992. 190 pages.

Volume 4: Northwest Florida

Section C. Sedimentation and Erosion Techniques

3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI Book 3, Chapter C1. 1970. 55 pages.
3-C2. Field methods for measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages.

3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter C3. 1972. 66 pages.
Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI Book 4, Chapter A1. 1968. 39 pages.
4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages.

Section B. Surface Water

4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI Book 4, Chapter B1. 1972. 18 pages.
4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI Book 4, Chapter B2. 1973. 20 pages.
4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages.

Section D. Interrelated Phases of the Hydrologic Cycle

4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages.

Book 5. Laboratory Analysis

Section A. Water Analysis

5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman, editors: USGS-TWRI Book 5, Chapter A1. 1989. 545 pages.

5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages.

5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS-TWRI Book 5, Chapter A3. 1987. 80 pages.

5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS-TWRI Book 5, Chapter A4. 1989. 363 pages.

5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 pages.

5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS-TWRI Book 5, Chapter A6. 1982. 181 pages.

Section C. Sediment Analysis

5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI Book 5, Chapter C1. 1969. 58 pages.

Book 6. Modeling Techniques

Section A. Ground Water

6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS-TWRI Book 6, Chapter A1. 1988. 586 pages.
6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI Book 6, Chapter A2. 1991. 68 pages.

6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS-TWRI Book 6, Chapter A3. 1993. 136 pages.

6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS-TWRI Book 6, Chapter A4. 1992. 108 pages.

6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS-TWRI Book 6, Chapter A5, 1993. 243 pages.

6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1996. 125 pages.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages.

7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.

7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS-TWRI Book 7, Chapter C3. 1981. 110 pages.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS-TWRI Book 8, Chapter A1. 1968. 23 pages.

8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages.

Section B. Instruments for Measurement of Discharge

8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

9-A1. National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A1. 1998. 47 p.

9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A2. 1998. 94 p.

9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A3. 1998. 75 p.

9-A4. National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A4. 1999. 156 p.

9-A5. National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A5. 1999, 149 p.

9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI Book 9, Chapter A6. 1998. Variously paginated.

9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, by D.N. Myers and F.D. Wilde: USGS-TWRI Book 9, Chapter A7. 1997. 49 pages.

9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, by D.B. Radtke: USGSTWRI Book 9, Chapter A8. 1998. 48 pages.

9-A9. National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities, by S.L. Lane and R.G. Fay: USGS-TWRI Book 9, Chapter A9. 1998. 60 pages.

STAGE, DISCHARGE, AND WATER QUALITY OF STREAMS

Figure 12. Location of stream gaging and lake gaging stations in Northwest Florida Water Management District.

Figure 13. Location of stream gaging stations in Suwannee River Water Management District.

LOCATION.--Lat $29^{\circ} 12^{\prime} 14^{\prime \prime}$, long $82^{\circ} 46^{\prime} 09^{\prime \prime}$ in SW sec. 2, T. 15 S., R. 15 E., Levy County, Hydrologic Unit 03110101 , near right bank at abandoned railroad grade, 0.5 mi upstream from Otter Creek, 3.6 mi upstream from mouth, and 4 mi southwest of Gulf Hammock.

DRAINAGE AREA.-- $480 \mathrm{mi}^{2}$, approximately, including that of Otter Creek.
PERIOD OF RECORD.--March 1963 to September 1978. November 1980 to September 1984 (fragmentary). October 1984 to September 1992 , October 1998 to current year.
REVISED RECORDS.--WSP 2105: 1969. WRD FL-72-1: Drainage area.
GAGE.--Water-stage and water-current meter recorders. Datum of gage is 10.51 ft below National Geodetic Vertical Datum of 1929. Prior to Nov. 24, 1980, waterstage and deflection-meter recorders at same site at datum 10.00 ft higher.
REMARKS.--Records poor. Flow affected by tide. Discharge computed from continuous velocity record obtained from water-current meter. Records include flow of Otter Creek. Above bankfull stage, discharge measurements are made along abandoned railroad fill and include all flow from about 1.5 mi northwest to 0.8 mi northeast of gaging station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	162	-248	46	-49	-33	-64	244	92	37	175	671	153
2	70	522	-34	2.6	99	127	278	119	38	134	560	357
3	66	125	-104	91	135	226	366	117	-18	109	456	487
4	169	36	149	164	e140	228	e300	58	19	55	400	550
5	196	85	103	331	e145	301	e200	50	-21	79	358	493
6	302	83	231	66	e150	270	e100	42	45	101	298	537
7	185	233	169	225	e155	284	67	55	87	89	350	586
8	170	214	92	212	163	261	-49	35	71	137	275	658
9	202	208	147	244	184	244	255	1.9	-19	69	268	609
10	236	232	201	157	169	233	77	38	-14	59	227	513
11	241	239	238	176	163	60	96	32	64	145	237	427
12	230	190	177	88	135	222	35	16	e63	147	704	335
13	185	33	77	92	-43	76	65	104	e61	132	554	256
14	129	33	182	279	181	. 04	170	147	60	116	655	192
15	110	. 84	26	-47	187	-72	200	181	64	31	553	117
16	52	-72	101	-41	190	186	195	114	66	20	393	10
17	-21	13	40	-. 17	263	260	131	79	29	96	275	586
18	-17	-98	-102	142	280	323	133	50	56	316	233	1130
19	-40	77	231	214	268	165	149	45	36	145	224	1700
20	60	259	235	333	312	238	67	64	31	69	211	1400
21	316	333	257	215	186	305	-81	17	84	147	199	1260
22	248	276	282	247	175	298	177	-19	87	133	191	1130
23	249	260	247	214	208	238	76	55	25	304	179	1060
24	248	256	204	240	155	147	-391	40	56	481	131	942
25	273	275	196	54	182	135	345	14	12	552	210	731
26	237	320	96	119	103	189	97	37	117	499	160	655
27	238	219	29	96	-5.3	11	16	-26	194	415	128	559
28	203	27	-35	107	40	420	-27	11	132	357	72	468
29	78	-74	48	52	-29	159	192	85	239	231	138	407
30	56	136	-17	101	---	114	162	185	222	393	88	355
31	33	---	-35	124	---	336	---	85	---	714	64	---
MEAN	157	140	112	137	147	191	122	62.1	64.1	208	305	622
MAX	316	522	282	333	312	420	366	185	239	714	704	1700
MIN	-40	-248	-104	-49	-43	-72	-391	-26	-21	20	64	10
IN.	. 38	. 32	. 27	. 33	. 33	. 46	. 28	. 15	. 15	. 50	. 73	1.45

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963-2000, BY WATER YEAR (WY)

[^0]LOCATION.--Lat $30^{\circ} 48^{\prime} 02^{\prime \prime}$, long $82^{\circ} 30^{\prime} 38^{\prime \prime}$, Clinch County, Hydrologic Unit 03110201 , on upstream side of concrete bridge on Perimeter Road in Superior Forest (private property), and 8.5 mi northeast of Fargo.
DRAINAGE AREA.--Not determined.
PERIOD OF RECORD.--November 1998 to current year, gage height only.
GAGE.--Water-stage recorder.
REMARKS.--No estimated daily gage heights. Records good.
EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 4.63 ft , Feb. 11999 ; minimum gage height, 1.59 ft , June 24, 1999.
EXTREMES FOR CURRENT YEAR.--Maximum gage height, 4.07 ft , Apr. 24; minimum gage height, 1.90 ft , July 11.
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.33	3.60	3.52	3.46	3.77	3.78	3.82	3.89	2.71	2.30	3.53	2.89
2	3.32	3.72	3.52	3.46	3.76	3.77	3.80	3.86	2.67	2.26	3.51	2.88
3	3.30	3.71	3.50	3.46	3.75	3.76	3.78	3.83	2.62	2.22	3.51	2.86
4	3.58	3.70	3.49	3.46	3.74	3.75	3.77	3.80	2.58	2.18	3.51	2.91
5	3.77	3.68	3.48	3.47	3.73	3.73	3.75	3.78	2.65	2.14	3.50	2.91
6	3.78	3.67	3.50	3.47	3.72	3.72	3.74	3.76	2.74	2.10	3.47	2.95
7	3.76	3.66	3.51	3.46	3.71	3.71	3.72	3.73	2.71	2.07	3.44	2.98
8	3.74	3.65	3.50	3.45	3.71	3.70	3.70	3.70	2.66	2.03	3.41	3.06
9	3.73	3.63	3.49	3.45	3.70	3.69	3.68	3.67	2.62	1.99	3.38	3.32
10	3.72	3.62	3.49	3.48	3.69	3.67	3.66	3.64	2.57	1.95	3.35	3.34
11	3.70	3.61	3.48	3.51	3.69	3.66	3.64	3.60	2.53	1.92	3.32	3.33
12	3.68	3.60	3.47	3.51	3.68	3.71	3.62	3.56	2.51	2.26	3.29	3.30
13	3.67	3.59	3.48	3.50	3.68	3.70	3.59	3.53	2.52	2.47	3.25	3.28
14	3.65	3.58	3.51	3.48	3.76	3.69	3.62	3.48	2.47	2.46	3.21	3.25
15	3.64	3.56	3.51	3.47	3.81	3.67	3.68	3.44	2.43	2.45	3.17	3.22
16	3.64	3.55	3.50	3.46	3.79	3.67	3.67	3.40	2.43	2.41	3.13	3.18
17	3.63	3.54	3.49	3.45	3.79	3.67	3.65	3.36	2.40	2.38	3.08	3.20
18	3.61	3.52	3.48	3.44	3.79	3.65	3.63	3.31	2.38	2.34	3.04	3.43
19	3.59	3.51	3.50	3.44	3.78	3.65	3.60	3.27	2.36	2.30	2.99	3.49
20	3.63	3.50	3.50	3.43	3.81	3.66	3.57	3.23	2.34	2.27	2.99	3.50
21	3.74	3.50	3.50	3.42	3.79	3.64	3.54	3.18	2.37	2.23	2.96	3.50
22	3.73	3.50	3.52	3.41	3.78	3.63	3.51	3.15	2.45	2.19	2.95	3.56
23	3.72	3.50	3.53	3.43	3.77	3.61	3.48	3.11	2.47	2.16	2.96	3.68
24	3.69	3.50	3.52	3.65	3.76	3.60	3.65	3.07	2.48	2.17	2.93	3.71
25	3.67	3.51	3.51	3.74	3.75	3.58	4.05	3.02	2.45	2.36	2.90	3.71
26	3.66	3.56	3.50	3.74	3.74	3.57	4.00	2.98	2.42	2.51	2.90	3.70
27	3.64	3.57	3.50	3.73	3.76	3.58	3.97	2.94	2.39	2.49	2.86	3.69
28	3.63	3.56	3.49	3.73	3.81	3.61	3.96	2.89	2.36	2.67	2.82	3.69
29	3.61	3.55	3.48	3.73	3.79	3.59	3.94	2.86	2.35	3.52	2.78	3.68
30	3.60	3.54	3.47	3.76	---	3.69	3.92	2.81	2.34	3.50	2.74	3.67
31	3.59	---	3.46	3.79	---	3.84	---	2.76	---	3.49	2.78	---
MEAN	3.64	3.58	3.50	3.53	3.75	3.68	3.72	3.37	2.50	2.38	3.15	3.33
MAX	3.78	3.72	3.53	3.79	3.81	3.84	4.05	3.89	2.74	3.52	3.53	3.71
MIN	3.30	3.50	3.46	3.41	3.68	3.57	3.48	2.76	2.34	1.92	2.74	2.86

CAL YR 1999 MEAN 3.69 MAX 4.62 MIN 1.64 WTR YR 2000 MEAN 3.34 MAX 4.05 MIN 1.92

LOCATION.--Lat $30^{\circ} 47^{\prime} 37^{\prime \prime}$, long $82^{\circ} 26^{\prime} 27^{\prime \prime}$, Clinch County, Hydrologic Unit 03110201 , on right bank, 0.5 mi northeast of Perimeter Road in Superior Forest (private property), and about 10.5 mi northeast of Fargo.
DRAINAGE AREA.--Not determined.
PERIOD OF RECORD.--November 1998 to current year, gage height only.
GAGE.--Water-stage recorder.
REMARKS.--No estimated daily gage heights. Records good. Creek dry at 0.44 ft .
EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 4.60 ft , Feb. 8,1999 ; minimum gage height, dry many days each year. EXTREMES FOR CURRENT YEAR.--Maximum gage height, 1.82 ft , Apr. 24; minimum gage height, dry many days.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 73	. 45	. 44	. 44	. 71	. 62	. 77	. 79	. 45	. 45	. 67	. 45
2	. 69	. 61	. 44	. 44	. 70	. 60	. 74	. 75	. 45	. 45	. 77	. 45
3	. 66	. 58	. 44	. 44	. 68	. 59	. 71	. 71	. 45	. 45	. 87	. 50
4	. 70	. 55	. 44	. 45	. 65	. 58	. 68	. 68	. 45	. 45	. 85	. 45
5	. 85	. 54	. 44	. 46	. 63	. 56	. 65	. 65	. 46	. 45	. 79	. 47
6	. 78	. 53	. 47	. 44	. 62	. 55	. 63	. 63	. 45	. 45	. 74	. 72
7	. 73	. 52	. 44	. 44	. 61	. 54	. 61	. 61	. 45	. 45	. 68	. 77
8	. 69	. 51	. 44	. 44	. 58	. 53	. 59	. 58	. 45	. 45	. 65	. 79
9	. 66	. 46	. 44	. 44	. 59	. 51	. 58	. 56	. 45	. 45	. 63	. 91
10	. 64	. 44	. 44	. 48	. 58	. 50	. 57	. 51	. 45	. 45	. 61	. 88
11	. 61	. 44	. 44	. 51	. 57	. 49	. 56	. 45	. 45	. 45	. 46	. 86
12	. 60	. 44	. 44	. 51	. 56	. 56	. 55	. 45	. 45	. 62	. 45	. 83
13	. 58	. 44	. 47	. 50	. 55	. 54	. 54	. 45	. 45	. 69	. 45	. 61
14	. 58	. 44	. 54	. 43	. 65	. 52	. 57	. 45	. 45	. 68	. 45	. 45
15	. 57	. 44	. 53	. 41	. 69	. 51	. 65	. 45	. 45	. 68	. 45	. 45
16	. 58	. 44	. 52	. 41	. 64	. 51	. 62	. 45	. 46	. 63	. 45	. 46
17	. 57	. 44	. 51	. 41	. 63	. 52	. 59	. 45	. 46	. 52	. 45	. 62
18	. 55	. 44	. 51	. 41	. 63	. 50	. 56	. 45	. 45	. 45	. 45	. 93
19	. 52	. 44	. 53	. 41	. 62	. 50	. 54	. 45	. 47	. 45	. 46	. 92
20	. 53	. 44	. 53	. 41	. 63	. 54	. 52	. 45	. 50	. 45	. 48	. 93
21	. 58	. 44	. 54	. 41	. 62	. 53	. 48	. 45	. 51	. 45	. 45	. 94
22	. 57	. 44	. 55	. 41	. 60	. 50	. 45	. 45	. 55	. 52	. 46	1.06
23	. 55	. 44	. 54	. 46	. 59	. 48	. 45	. 45	. 50	. 49	. 45	1.35
24	. 52	. 44	. 52	. 70	. 59	. 45	. 84	. 45	. 64	. 48	. 45	1.53
25	. 49	. 44	. 52	. 68	. 58	. 45	1.34	. 45	. 51	. 60	. 45	1.56
26	. 44	. 51	. 51	. 62	. 57	. 45	1.07	. 45	. 45	. 54	. 45	1.62
27	. 44	. 53	. 51	. 59	. 60	. 47	. 97	. 45	. 45	. 49	. 45	1.61
28	. 44	. 52	. 49	. 61	. 68	. 52	. 95	. 45	. 45	. 55	. 45	1.58
29	. 44	. 51	. 45	. 66	. 64	. 51	. 90	. 45	. 47	. 70	. 46	1.50
30	. 44	. 49	. 44	. 73	.	. 69	. 84	. 45	. 45	. 65	. 45	1.42
31	. 44	---	. 44	. 72	---	. 86	---	. 45	---	. 65	. 45	-
MEAN	. 59	. 48	. 48	. 50	. 62	. 54	. 68	. 51	. 47	. 52	. 54	. 92
MAX	. 85	. 61	. 55	. 73	. 71	. 86	1.34	. 79	. 64	. 70	. 87	1.62
MIN	. 44	. 44	. 44	. 41	. 55	. 45	. 45	. 45	. 45	. 45	. 45	. 45

[^1]LOCATION.--Lat $30^{\circ} 48^{\prime} 14^{\prime \prime}$, long $82^{\circ} 25^{\prime} 03^{\prime \prime}$, in Okefenokee National Wildlife Refuge and Wilderness Area, Charlton County, Hydrologic Unit 03110201, at southern control structure on Okefenokee Swamp Sill, 12 mi northeast of Fargo.
DRAINAGE AREA.--Indeterminate.
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--October 1, 1998 to current year.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAIL'Y MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	51	55	34	44	60	77	67	83	6.4	30	91	52
2	56	61	34	43	61	77	72	83	6.1	30	110	53
3	62	61	33	43	62	76	76	82	5.9	29	121	52
4	70	60	33	42	63	75	81	80	5.5	29	130	52
5	84	59	32	41	63	73	82	79	5.3	29	131	51
6	90	58	32	41	64	71	82	75	5.3	29	127	53
7	92	57	32	41	64	70	80	72	5.1	28	124	54
8	95	56	32	41	64	67	78	70	4.9	27	116	59
9	96	55	32	40	64	65	75	68	4.6	26	107	68
10	96	53	31	40	63	63	72	66	4.4	25	101	74
11	97	52	31	40	62	61	69	65	4.1	24	92	79
12	96	51	31	39	61	63	66	62	3.8	29	85	84
13	96	50	31	39	60	61	64	60	3.6	30	78	90
14	94	48	32	38	62	59	63	59	3.2	32	72	94
15	92	47	33	37	66	57	64	57	3.0	38	67	96
16	92	45	34	37	66	56	63	53	3.9	46	63	97
17	91	44	35	36	65	56	62	50	4.9	56	59	101
18	87	42	37	36	64	55	60	45	6.6	64	55	124
19	82	40	39	36	64	54	59	41	9.6	71	51	135
20	80	37	40	36	65	55	57	34	13	75	43	138
21	82	35	42	36	65	53	55	24	15	75	47	140
22	79	35	43	35	66	52	52	15	17	77	49	155
23	76	34	44	36	67	51	52	12	21	82	46	183
24	72	34	45	41	69	49	59	11	22	81	48	200
25	69	33	45	44	70	48	70	10	24	87	44	204
26	67	35	45	45	69	47	71	10	25	90	41	212
27	64	35	45	46	72	47	75	9.7	26	84	44	212
28	62	35	45	49	78	48	79	9.1	27	81	46	208
29	60	35	44	51	78	47	83	8.6	28	93	49	200
30	58	34	44	54	---	54	84	7.9	29	90	52	191
31	55	---	44	59	--	63	---	6.2	---	88	53	--
MEAN	78.8	45.9	37.2	41.5	65.4	59.7	69.1	45.4	11.4	54.0	75.5	117
MAX	97	61	45	59	78	77	84	83	29	93	131	212
MIN	51	33	31	35	60	47	52	6.2	3.0	24	41	51

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

| | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| MEAN | 771 | 181 | 91.9 | 143 | 300 | 169 | 83.2 | 38.6 | 10.3 | 60.9 | 69.2 | 81.8 |
| MAX | 1462 | 316 | 147 | 244 | 543 | 278 | 97.4 | 45.4 | 11.4 | 67.7 | 75.5 | 117 |
| (WY) | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 2000 | 2000 | 1999 | 2000 | 2000 |
| MIN | 78.8 | 45.9 | 37.2 | 41.5 | 65.4 | 59.7 | 69.1 | 31.9 | 9.18 | 54.0 | 62.9 | 46.5 |
| (WY) | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 1999 | 1999 | 2000 | 1999 | 1999 |

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

126		
635	Feb	8
5.5	Jun	14
5.8	Jun	9
378		
56		
13		

FOR 2000 WATER YEAR

58.4		
212	Sep 26	
3.0	Jun 15	
3.7	Jun 10	
214	Sep 26	
108.15	Sep 26	
2.8	Jun 14	
92		
55		
24		

WATER YEARS 1999 - 2000

167			
275			1999
58.4			2000
e1840	Oct 12	1998	
3.0	Jun 15 2000		
3.7	Jun 10 2000		
e1840	Oct 12 1998		
.00	Oct 12 1998		
2.8	Jun 14	2000	
390			
64			
17			

WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

PERIOD OF RECORD.--October 1, 1998 to current year.
CORRECTIONS.--For water year 1999, the published value of $110 \mathrm{u} / \mathrm{l}$ for dissolved zinc, parameter 01090 , for April 20 , 1999 was in error. The correct value is $14 \mathrm{u} / \mathrm{l}$.

E Estimated value.
< Actual value is known to be less than the value shown.
M Presence of material verified but not quantified.

LOCATION.--Lat $30^{\circ} 48^{\prime} 58^{\prime \prime}$, long $82^{\circ} 24^{\prime} 49^{\prime \prime}$, in Okefenokee National Wildlife Refuge and Wilderness Area, Charlton County,
Hydrologic Unit 03110201, at northern control structure on Okefenokee Swamp Sill, 12.5 mi northeast of Fargo.
DRAINAGE AREA.--Indeterminate.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1, 1998 to current year.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.
REMARKS.--Records good, except for estimated daily discharges, which are fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28	26	23	23	23	23	24	28	. 00	20	31	26
2	28	26	23	23	23	23	24	28	. 00	20	32	26
3	29	26	23	23	23	23	24	28	. 00	21	33	26
4	30	26	23	23	23	23	24	28	. 00	21	34	26
5	31	26	23	23	23	23	24	28	. 46	22	34	26
6	31	26	23	23	23	22	25	28	. 98	22	33	26
7	31	26	23	22	23	22	25	27	. 66	22	33	26
8	31	26	22	22	23	22	25	27	. 37	22	32	27
9	30	26	22	22	23	22	25	27	. 16	21	32	27
10	30	26	22	22	23	21	24	27	. 02	21	31	27
11	30	26	22	22	23	21	24	26	. 00	21	31	28
12	30	26	21	22	23	22	24	e26	. 00	23	30	28
13	29	25	22	22	23	22	24	e26	. 00	24	30	28
14	29	25	23	22	23	22	24	e25	. 00	25	29	28
15	29	25	23	22	23	21	25	e25	. 33	26	29	28
16	28	25	23	21	23	22	24	e24	1.2	28	29	28
17	28	24	23	21	23	22	24	24	2.0	29	28	28
18	28	24	23	21	23	21	24	24	4.2	30	28	30
19	28	24	23	21	23	21	24	21	7.4	31	28	30
20	28	24	23	21	23	22	24	16	10	31	28	30
21	28	24	23	21	23	22	24	11	11	31	27	30
22	28	23	23	20	23	22	24	6.9	13	31	27	32
23	27	23	23	21	23	22	24	e5.0	14	31	27	35
24	27	23	23	23	23	21	26	3.4	15	31	27	37
25	27	23	23	23	23	22	27	2.8	15	31	27	37
26	27	24	23	22	23	21	27	2.0	16	31	27	38
27	27	23	23	23	23	22	27	1.2	16	31	27	38
28	27	23	23	23	23	22	27	. 67	17	31	27	38
29	26	23	23	22	23	22	28	. 38	18	31	27	37
30	26	23	23	23	---	24	28	. 09	19	31	26	36
31	26	---	23	23	---	24	---	. 02	---	31	26	---
MEAN	28.5	24.7	22.8	22.1	23.0	22.1	24.9	17.6	6.06	26.5	29.4	30.2
MAX	31	26	23	23	23	24	28	28	19	31	34	38
MIN	26	23	21	20	23	21	24	. 02	. 00	20	26	26

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

[^2]
WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

PERIOD OF RECORD.--October 1, 1998 to current year.
CORRECTIONS.--For water year 1999, the published value of $110 \mathrm{u} / \mathrm{l}$ for dissolved zinc, parameter 01090, for April 20, 1999 was in error. The correct value is $12 \mathrm{u} / \mathrm{l}$.

E Estimated value.
< Actual value is known to be less than the value shown.
M Presence of material verified but not quantified.

LOCATION.--Lat $30^{\circ} 39^{\prime} 02^{\prime \prime}$, long $82^{\circ} 31^{\prime} 52^{\prime \prime}$, Clinch County, Hydrologic Unit 03110201 , reference point at downstream side of bridge on State Highway 94 , 2.2 mi east of Edith, 3.0 mi south of Fargo, and 3.2 mi upstream from mouth.

DRAINAGE AREA.--Not determined.
PERIOD OF RECORD.--December 1998 to current year, gage height and discharge measurements only.
GAGE.--Nonrecording gage. Elevation of gage is 117.00 ft , above National Geodetic Vertical Datum of 1929,from topographic map.
EXTREMES FOR PERIOD OF RECORD.--Maximum measured discharge, $19.3 \mathrm{ft}^{3} / \mathrm{s}$, Mar. 9,2000 ; maximum observed gage height, 107.52 ft , Mar. 9 , 2000; minimum measured discharge, no flow, May 24, 2000, July 26, 2000.
EXTREMES FOR CURRENT YEAR.-- Maximum measured discharge, $19.3 \mathrm{ft}^{3} / \mathrm{s}$, Mar. 9; maximum observed gage height, 107.52 ft , Mar. 9 ; minimum measured discharge, no flow, May 24, July 26.

DISCHARGE MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

| DATE | TIME | STREAM
 STAGE | DISCHARGE
 IN FT3/S |
| :--- | :---: | :---: | :---: | :---: |
| Nov. 1 | 1010 | 107.18 | 6.72 |
| Jan. 13 | 1330 | 107.37 | 16.0 |
| Mar. 9 | 1400 | 107.52 | 19.3 |
| May 24 | 1515 | 106.71 | No flow. |
| July 26 | 1350 | 106.18 | No flow. |

LOCATION.--Lat $30^{\circ} 30^{\prime} 26^{\prime \prime}$, long $82^{\circ} 42^{\prime} 59^{\prime \prime}$, in $\mathrm{NE}^{1} / 4$ sec. 9 , T. 1 N., R. 16 E., Columbia County, Hydrologic Unit 03110201 , near left bank on downstream side of bridge on State Highway $6,3.7 \mathrm{mi}$ northwest of Benton, 6.4 mi south of Florida-Georgia State Line, 13.7 mi east of Jasper, and 196 mi , upstream from mouth.
DRAINAGE AREA.--2,090 mi^{2}, approximately, includes part of watershed in Okefenokee Swamp which is indeterminate.
PERIOD OF RECORD.--October 1975 to current year. Miscellaneous discharge measurements for some periods July 1934 to September 1975. Records for December 1931 to June 1934, at site 2.0 mi upstream (at Turner Bridge) not equivalent owing to difference in drainage areas.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Oct. 1, 1975 to Oct. 14, 1986, nonrecording gage at same site and datum. Dec. 8, 1931 to June 30, 1934, nonrecording gage at site 2.0 mi upstream, datum unknown.
REMARKS.--No estimated daily discharges. Records good. Maximum discharge, $656 \mathrm{ft}^{3} / \mathrm{s}$, stage rising; peak occurred Oct. 2, 2000, discharge, $665 \mathrm{ft}^{3} / \mathrm{s}$, gage height 77.45 ft ; maximum independent peak discharge, $279 \mathrm{ft}^{3} / \mathrm{s}$, Apr. 26, gage height 75.93 ft .
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge measured, 27,700 $\mathrm{ft}^{3} / \mathrm{s}$ Apr. 6, 1973, gage height, 102.80 ft .
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	90	104	61	83	127	156	154	178	9.4	45	135	102
2	94	113	60	82	132	154	154	168	8.6	43	145	112
3	98	109	59	82	134	150	156	160	7.9	43	159	107
4	102	110	58	81	134	146	159	152	7.2	43	186	117
5	112	107	58	82	135	143	158	145	7.1	43	209	110
6	136	105	61	79	136	138	156	139	7.8	42	214	112
7	149	104	60	79	136	134	153	133	7.4	42	210	109
8	152	102	57	78	135	131	152	126	6.9	43	198	118
9	153	100	55	77	134	127	145	118	7.1	42	189	134
10	154	98	54	78	132	122	139	112	6.7	41	175	157
11	153	96	55	79	129	118	135	106	6.5	42	163	161
12	152	94	54	80	126	116	129	102	7.8	55	153	165
13	150	90	55	78	124	112	122	97	9.7	69	140	169
14	147	87	57	77	148	111	121	94	7.6	63	131	172
15	145	85	60	75	156	107	118	92	6.9	58	124	174
16	142	83	65	72	155	104	118	89	6.5	58	117	179
17	140	81	67	71	154	103	116	85	6.1	61	108	184
18	140	79	69	69	153	101	112	82	6.1	73	101	216
19	137	76	73	71	150	98	107	79	6.3	84	96	256
20	133	73	76	67	149	97	102	71	6.9	94	120	292
21	133	69	81	67	146	98	97	63	11	101	99	310
22	134	68	84	65	144	96	94	54	25	105	91	317
23	136	63	86	69	142	94	90	41	33	106	85	341
24	134	62	87	86	140	90	92	27	41	114	85	389
25	127	63	87	97	139	87	210	20	34	128	89	436
26	121	61	87	105	139	86	272	17	36	130	90	486
27	116	62	86	105	145	104	235	15	37	129	102	534
28	112	65	86	105	153	109	207	13	39	125	106	578
29	108	64	86	107	155	108	193	13	40	124	112	618
30	104	62	85	114	---	118	188	12	43	133	105	646
31	100	---	84	120	---	147	---	11	---	134	100	---
MEAN	129	84.5	69.5	83.2	141	116	146	84.3	16.2	77.8	133	260
MAX	154	113	87	120	156	156	272	178	43	134	214	646
MIN	90	61	54	65	124	86	90	11	6.1	41	85	102
IN.	. 07	. 05	. 04	. 05	. 07	. 06	. 08	. 05	. 01	. 04	. 07	. 14

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976-2000, BY WATER YEAR (WY)

MEAN	804	529	1123	1749	3239	3714	2328	750	550	647	974
MAX	3877	2824	9472	6679	10200	10750	12760	2979	3194	2966	5545
(WY)	1995	1998	1977	1977	1998	1984	1984	1983	1976	1991	1991
MIN	9.77	8.18	9.76	17.9	128	116	141	56.2	16.2	22.5	14.0
(WY)	1979	1979	1979	1979	1989	2000	1999	199	13.3		

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN LOWEST DAILY MEAN
annual seven-day minimum
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

199		
999	Feb	9
15	Jun	12
16	Jun	8
1.29		
602		
100		
37		

FOR 2000 WATER YEAR

111	
646	Sep 30
6.1	Jun 17
6.6	Jun 14
656	Sep 30
77.42	Sep 30
5.5	Jun 17
160	
104	
41	

WATER YEARS 1976 - 2000

1417		
3297		1984
111		2000
18200	Apr	6.1984
1.3	Oct	9
3.3	Oct	31990
18300	Apr	6
1984		
99.90	Apr	6
1984		
1.3	Oct	9
9.21		
3800		
532		

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	74.85	74.99	74.72	74.87	75.15	75.32	75.30	75.43	74.12	74.63	75.27	75.02
2	74.89	75.05	74.72	74.86	75.18	75.30	75.30	75.38	74.09	74.62	75.32	75.08
3	74.93	75.03	74.71	74.86	75.19	75.29	75.31	75.34	74.07	74.61	75.38	75.05
4	74.98	75.04	74.70	74.86	75.19	75.27	75.34	75.30	74.05	74.61	75.50	75.11
5	75.04	75.03	74.70	74.86	75.20	75.24	75.33	75.26	74.04	74.61	75.60	75.07
6	75.19	75.01	74.71	74.84	75.21	75.22	75.32	75.22	74.07	74.60	75.62	75.08
7	75.28	75.00	74.71	74.84	75.21	75.20	75.30	75.19	74.05	74.60	75.61	75.06
8	75.29	74.99	74.70	74.84	75.20	75.18	75.29	75.14	74.04	74.60	75.55	75.11
9	75.29	74.97	74.69	74.83	75.19	75.15	75.25	75.10	74.04	74.60	75.51	75.20
10	75.30	74.96	74.68	74.83	75.18	75.12	75.22	75.06	74.03	74.59	75.44	75.33
11	75.29	74.94	74.68	74.84	75.17	75.10	75.20	75.02	74.03	74.60	75.39	75.35
12	75.29	74.93	74.68	74.84	75.15	75.09	75.17	74.99	74.06	74.71	75.33	75.37
13	75.28	74.91	74.68	74.83	75.13	75.06	75.12	74.96	74.13	74.81	75.27	75.39
14	75.26	74.89	74.69	74.82	75.28	75.05	75.11	74.95	74.06	74.77	75.22	75.40
15	75.25	74.88	74.72	74.81	75.32	75.03	75.10	74.93	74.04	74.73	75.18	75.42
16	75.23	74.86	74.75	74.79	75.31	75.01	75.10	74.91	74.02	74.73	75.13	75.44
17	75.21	74.84	74.76	74.79	75.30	75.00	75.09	74.88	74.01	74.76	75.08	75.47
18	75.22	74.82	74.77	74.78	75.30	74.99	75.06	74.86	74.01	74.84	75.03	75.62
19	75.20	74.80	74.80	74.79	75.28	74.97	75.03	74.83	74.02	74.92	75.00	75.82
20	75.18	74.78	74.82	74.77	75.28	74.97	74.99	74.79	74.04	75.00	75.14	75.99
21	75.18	74.77	74.85	74.77	75.26	74.97	74.96	74.74	74.17	75.06	75.02	76.08
22	75.19	74.76	74.87	74.75	75.25	74.96	74.94	74.68	74.40	75.09	74.96	76.11
23	75.20	74.73	74.88	74.78	75.24	74.94	74.92	74.58	74.52	75.10	74.93	76.22
24	75.18	74.72	74.89	74.89	75.23	74.92	74.93	74.46	74.60	75.16	74.93	76.43
25	75.14	74.73	74.90	74.96	75.23	74.90	75.58	74.36	74.53	75.24	74.95	76.62
26	75.10	74.72	74.90	75.02	75.22	74.89	75.89	74.30	74.55	75.25	74.95	76.82
27	75.08	74.72	74.89	75.02	75.26	75.01	75.71	74.26	74.56	75.25	75.03	77.00
28	75.05	74.74	74.89	75.02	75.30	75.04	75.58	74.22	74.58	75.23	75.05	77.15
29	75.02	74.74	74.89	75.03	75.31	75.03	75.51	74.20	74.59	75.22	75.09	77.29
30	75.00	74.73	74.88	75.07	---	75.09	75.48	74.19	74.62	75.27	75.04	77.39
31	74.97	---	74.87	75.11	---	75.27	---	74.15	---	75.27	75.01	---
TOTAL	2329.56	2246.08	2318.10	2320.97	2181.72	2327.58	2257.43	2319.68	2226.14	2321.08	2331.53	2273.49
MEAN	75.15	74.87	74.78	74.87	75.23	75.08	75.25	74.83	74.20	74.87	75.21	75.78
MAX	75.30	75.05	74.90	75.11	75.32	75.32	75.89	75.43	74.62	75.27	75.62	77.39
MIN	74.85	74.72	74.68	74.75	75.13	74.89	74.92	74.15	74.01	74.59	74.93	75.02
CAL YR	1999	TOTAL 275	01.60 M	AN 75.35	MAX 78.81	1 MIN 7	. 06					
WTR YR	2000	TOTAL 274	53.36 M	AN 75.01	MAX 77.39	9 MIN 7	. 01					

LOCATION.--Lat $30^{\circ} 19^{\prime} 32^{\prime \prime}$, long $82^{\circ} 44^{\prime} 18^{\prime \prime}$, in SW ${ }^{1} / 4$ sec. 8 , T. 2 S., R. 16 E., Columbia County, Hydrologic Unit 03110201 , on downstream side of bridge on U.S. Highway $41,1.0 \mathrm{mi}$ southeast of White Springs and 171 mi upstream from mouth.

DRAINAGE AREA.--2,430 mi^{2} approximately, includes part of watershed in Okefenokee Swamp which is indeterminate.
PERIOD OF RECORD.--May 1906 to December 1908, February 1927 to current year.
REVISED RECORDS.--WSP 1504: 1906, 1908. WSP 1905: WDR FL-75-1: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 31, 1932, nonrecording gage at site 1.0 mi downstream at datum 48.54 ft . August 1, 1932 to October 10, 1979, water-stage recorder, at present site, at datum 48.54 ft . October 11, 1979 to December 1, 1983 , nonrecording gage at site 2.2 miles downstream at NGVD. December 2, 1983 to June 30, 1996, nonrecording gage, at present site and datum.
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	371	105	73	92	143	170	222	188	13	47	379	116
2	296	128	72	91	148	169	205	177	13	44	469	122
3	252	115	72	91	149	163	194	165	12	41	501	128
4	230	109	73	90	148	159	192	153	11	40	966	130
5	216	109	73	91	147	152	187	142	11	41	1000	136
6	215	109	75	88	144	147	182	134	11	40	790	134
7	224	107	75	88	144	142	178	125	10	40	665	136
8	222	105	73	87	142	137	173	116	9.7	39	532	140
9	213	103	73	87	142	133	172	111	9.1	39	454	173
10	205	102	72	87	139	128	159	106	8.6	37	396	198
11	197	100	72	87	136	123	155	100	8.3	37	333	217
12	191	98	71	88	134	127	150	95	8.2	44	296	214
13	184	96	75	87	132	117	143	91	8.4	52	268	211
14	176	93	95	88	167	114	137	88	11	60	235	208
15	171	91	80	84	221	113	136	84	12	57	209	205
16	165	89	77	83	190	111	133	81	12	53	185	221
17	160	87	78	82	175	112	131	78	9.8	55	164	275
18	155	85	79	81	164	109	128	75	11	57	146	441
19	153	84	82	81	158	106	121	73	11	70	134	472
20	148	83	84	81	151	107	116	71	9.2	82	150	496
21	142	83	86	78	139	105	113	66	8.5	90	157	523
22	140	79	91	77	133	105	110	66	12	96	141	514
23	139	79	93	82	129	103	106	62	22	102	127	523
24	138	79	94	122	127	100	104	50	37	110	122	538
25	133	78	93	129	123	98	131	37	41	118	131	557
26	126	78	92	121	121	97	256	29	37	137	145	582
27	120	76	93	119	126	100	277	24	41	137	132	606
28	116	75	93	117	168	112	245	21	45	144	132	632
29	112	76	93	117	170	114	224	18	46	153	132	651
30	109	75	92	123	---	144	201	16	46	198	127	669
31	106	---	92	141	--	268	-	15	---	262	117	---
MEAN	178	92.5	81.8	95.5	149	129	166	85.7	18.2	81.4	314	339
MAX	371	128	95	141	221	268	277	188	46	262	1000	669
MIN	106	75	71	77	121	97	104	15	8.2	37	117	116
IN.	. 08	. 04	. 04	. 05	. 07	. 06	. 08	. 04	. 01	. 04	. 15	. 16

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1906-2000, BY WATER YEAR (WY)

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	52.30	50.87	50.52	50.73	51.14	51.29	51.58	51.45	50.03	50.55	52.33	50.96
2	51.96	51.04	50.51	50.73	51.17	51.29	51.48	51.41	50.01	50.52	52.74	51.01
3	51.74	50.96	50.50	50.72	51.17	51.25	51.43	51.36	49.99	50.49	52.87	51.05
4	51.63	50.90	50.51	50.71	51.17	51.23	51.42	51.31	49.97	50.48	54.66	51.06
5	51.56	50.91	50.51	50.72	51.16	51.19	51.39	51.26	49.96	50.48	54.79	51.10
6	51.56	50.90	50.53	50.69	51.14	51.16	51.36	51.23	49.95	50.48	54.02	51.09
7	51.60	50.88	50.53	50.68	51.14	51.13	51.34	51.18	49.94	50.48	53.54	51.10
8	51.59	50.87	50.51	50.68	51.13	51.10	51.31	51.14	49.92	50.47	53.00	51.12
9	51.54	50.85	50.51	50.68	51.13	51.08	51.31	51.10	49.90	50.46	52.67	51.31
10	51.50	50.83	50.50	50.68	51.12	51.05	51.23	51.06	49.88	50.45	52.42	51.45
11	51.46	50.81	50.50	50.68	51.10	51.02	51.21	51.02	49.87	50.44	52.12	51.55
12	51.42	50.79	50.49	50.69	51.09	51.04	51.18	50.99	49.87	50.52	51.95	51.53
13	51.38	50.78	50.54	50.68	51.07	50.97	51.14	50.95	49.87	50.61	51.81	51.52
14	51.33	50.75	50.77	50.69	51.27	50.95	51.10	50.93	49.96	50.67	51.64	51.50
15	51.30	50.73	50.60	50.65	51.58	50.93	51.10	50.90	50.01	50.65	51.51	51.48
16	51.27	50.70	50.57	50.63	51.46	50.92	51.08	50.87	49.99	50.62	51.38	51.57
17	51.24	50.68	50.58	50.62	51.40	50.93	51.07	50.85	49.93	50.63	51.26	51.85
18	51.21	50.65	50.59	50.61	51.35	50.90	51.05	50.82	49.96	50.65	51.15	52.61
19	51.20	50.64	50.62	50.62	51.33	50.87	51.01	50.80	49.95	50.77	51.08	52.75
20	51.17	50.64	50.65	50.61	51.30	50.88	50.97	50.78	49.91	50.88	51.18	52.85
21	51.13	50.63	50.67	50.58	51.25	50.87	50.93	50.73	49.88	50.94	51.22	52.97
22	51.12	50.58	50.72	50.56	51.22	50.86	50.91	50.73	49.99	50.99	51.13	52.93
23	51.11	50.58	50.74	50.62	51.20	50.84	50.87	50.70	50.21	51.04	51.05	52.97
24	51.11	50.59	50.75	50.99	51.19	50.82	50.85	50.58	50.44	51.09	51.01	53.03
25	51.08	50.58	50.74	51.06	51.18	50.79	51.05	50.44	50.49	51.14	51.06	53.11
26	51.04	50.57	50.74	51.01	51.17	50.79	51.75	50.34	50.44	51.24	51.15	53.21
27	51.00	50.55	50.74	50.99	51.18	50.81	51.85	50.26	50.49	51.24	51.07	53.31
28	50.96	50.53	50.74	50.97	51.31	50.93	51.69	50.19	50.53	51.27	51.08	53.41
29	50.93	50.55	50.74	50.97	51.29	50.95	51.60	50.14	50.54	51.30	51.07	53.49
30	50.90	50.54	50.73	51.01	---	51.12	51.50	50.10	50.55	51.49	51.04	53.56
31	50.88		50.73	51.13		51.81		50.06		51.78	50.97	---
TOTAL	1591.22	1521.88	1569.08	1573.39	1485.41	1581.77	1537.76	1575.68	1502.43	1574.82	1609.97	1562.45
MEAN	51.33	50.73	50.62	50.75	51.22	51.02	51.26	50.83	50.08	50.80	51.93	52.08
MAX	52.30	51.04	50.77	51.13	51.58	51.81	51.85	51.45	50.55	51.78	54.79	53.56
MIN	50.88	50.53	50.49	50.56	51.07	50.79	50.85	50.06	49.87	50.44	50.97	50.96

Location.--Lat $30^{\circ} 35^{\prime} 53^{\prime \prime}$, long $83^{\circ} 04^{\prime} 24^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{sec} .1$, T. 2 N., R. 12 E., Hamilton County, Hydrologic Unit 03110202, near left bank on downstream side of bridge on State Highway 150, 150 ft upstream from Southern Railroad bridge, $1,400 \mathrm{ft}$ downstream from Apalahoochee River, 1.5 mi south of FloridaGeorgia State line, and 1.6 mi southeast of Jennings, and 20.1 mi upstream from mouth.
Drainage Area.-- $1,680 \mathrm{mi}^{2}$, approximately.
PERIOD OF RECORD.--July 1976 to September 1984; October 1984 to September 1985 (gage height and peak discharge only); October 1985 to September 1987; September 1998 to current year. Prior to July 28, 1975 (one miscellaneous discharge measurement in 1923, three in 1928 and six made by Suwannee River Water Management District in 1976).
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (Florida Department of Transportation bench mark). Prior to August 18, 1928, nonrecording gage at site 150 ft downstream at datum unknown. July 1976 to September 1987, at datum 58.22 ft lower.
REMARKS.--No estimated daily discharges. Records are good.
COOPERATION.--Records from October 1999 to September 2000 were collected and computed by Suwannee River Water Management District and reviewed by U. S. Geological Survey.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $18,8000 \mathrm{ft}^{3} / \mathrm{s}$ Feb. 17,1986 , gage height, 32.10 ft ., minimum, $31 \mathrm{ft}^{3} / \mathrm{s}$ July 22 , 1986 , gage height, 3.30 ft .

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum measured discharge, $17,900 \mathrm{ft}^{3} / \mathrm{s}$ May 2 , 1928, gage height not determined.
EXTREMES FOR CURRENT YEAR.--Maximum daily discharge $3,850 \mathrm{ft}^{3} / \mathrm{s}$, Apr. 13 , gage height 73.54 ft ; minimum daily, $40 \mathrm{ft}^{3} / \mathrm{s}$, Oct. 29 .
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	200	46	88	74	275	812	1300	608	85	140	160	72
2	138	328	76	74	270	770	1290	530	79	114	150	64
3	110	285	68	74	246	704	1260	488	76	96	162	70
4	110	295	67	73	242	626	1280	458	74	84	222	98
5	162	186	66	73	246	554	1370	450	70	74	355	132
6	190	136	64	74	246	497	1550	473	79	67	328	979
7	209	110	63	78	254	468	1890	506	73	62	268	2360
8	186	96	62	74	278	453	2270	512	72	62	210	2650
9	162	88	62	73	316	445	2690	465	66	54	170	2840
10	140	80	62	84	350	433	3100	410	60	48	188	2520
11	122	76	61	102	372	433	3430	368	54	48	166	2430
12	108	70	62	106	384	450	3720	333	52	56	152	2440
13	97	68	67	97	392	465	3850	298	52	70	130	2590
14	91	67	84	91	491	458	3750	263	48	82	116	2690
15	85	64	80	85	572	438	3310	242	50	186	104	2530
16	80	62	78	82	551	416	2670	224	52	275	96	2000
17	76	58	73	80	518	406	2010	206	52	128	90	1340
18	72	58	68	88	494	402	1420	188	54	79	84	2470
19	64	58	80	97	465	396	1070	176	50	64	79	2730
20	64	56	96	104	433	404	845	164	48	56	104	2460
21	62	61	104	102	416	450	713	152	110	54	85	2900
22	62	62	104	98	418	539	620	150	142	58	86	2850
23	60	62	104	98	445	602	545	147	162	60	86	2730
24	55	68	98	164	482	674	623	138	200	55	78	2700
25	49	74	91	230	527	761	1750	130	244	86	70	2620
26	49	78	85	252	566	836	1640	122	216	158	76	2480
27	44	86	80	244	614	941	1740	112	210	224	74	2250
28	44	110	80	202	728	1030	1280	102	184	184	76	2040
29	40	91	76	194	794	1130	892	104	180	168	73	1860
30	43	86	76	208	---	1190	716	92	158	130	68	1710
31	42	---	74	250	---	1260	---	90	---	180	67	---
TOTAL	3016	3065	2399	3725	12385	19443	54594	8701	3052	3202	4173	59605
MEAN	97.3	102	77.4	120	427	627	1820	281	102	103	135	1987
MAX	209	328	104	252	794	1260	3850	608	244	275	355	2900
MIN	40	46	61	73	242	396	545	90	48	48	67	64
AC-FT	5980	6080	4760	7390	24570	38570	108300	17260	6050	6350	8280	118200
CFSM	. 06	. 06	. 05	. 07	. 25	. 37	1.08	. 17	. 06	. 06	. 08	1.18
IN.	. 07	. 07	. 05	. 08	. 27	. 43	1.21	. 19	. 07	. 07	. 09	1.32

WTR YR 2000 TOTAL 177360 MEAN 485 MAX 3850 MIN 40 AC-FT 351800 CFSM . 29 IN. 3.93

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	62.30	61.44	61.72	61.63	62.66	64.64	66.26	63.96	61.70	62.00	62.10	61.61
2	61.99	62.87	61.64	61.63	62.64	64.50	66.22	63.70	61.66	61.87	62.05	61.56
3	61.85	62.70	61.59	61.63	62.53	64.28	66.14	63.56	61.64	61.77	62.11	61.60
4	61.85	62.74	61.58	61.62	62.51	64.02	66.09	63.45	61.63	61.69	62.41	61.79
5	62.11	62.23	61.57	61.62	62.53	63.78	66.27	63.42	61.60	61.63	62.98	61.96
6	62.25	61.98	61.56	61.63	62.53	63.59	66.76	63.51	61.66	61.58	62.87	65.09
7	62.34	61.85	61.56	61.65	62.57	63.49	67.59	63.62	61.62	61.55	62.63	68.85
8	62.23	61.77	61.55	61.63	62.67	63.43	68.69	63.64	61.61	61.55	62.35	69.66
9	62.11	61.72	61.55	61.62	62.82	63.40	69.89	63.48	61.57	61.49	62.15	70.20
10	62.00	61.67	61.55	61.69	62.96	63.35	71.14	63.25	61.53	61.45	62.24	69.30
11	61.91	61.64	61.54	61.81	63.06	63.35	72.22	63.04	61.49	61.44	62.13	69.04
12	61.84	61.60	61.55	61.83	63.12	63.42	73.11	62.89	61.48	61.51	62.06	69.07
13	61.78	61.59	61.58	61.78	63.16	63.48	73.54	62.75	61.48	61.60	61.95	69.50
14	61.74	61.58	61.69	61.74	63.57	63.45	73.20	62.61	61.45	61.68	61.88	69.78
15	61.70	61.56	61.67	61.70	63.84	63.37	71.83	62.51	61.47	62.23	61.82	69.34
16	61.67	61.55	61.65	61.68	63.77	63.28	69.84	62.42	61.48	62.66	61.77	67.80
17	61.64	61.52	61.62	61.67	63.66	63.23	67.94	62.33	61.48	61.94	61.73	66.07
18	61.61	61.52	61.59	61.72	63.58	63.21	66.41	62.24	61.49	61.66	61.69	69.15
19	61.56	61.52	61.67	61.78	63.48	63.18	65.39	62.18	61.47	61.56	61.66	69.89
20	61.56	61.51	61.77	61.82	63.35	63.22	64.75	62.12	61.45	61.51	61.82	69.12
21	61.55	61.54	61.82	61.81	63.28	63.42	64.31	62.06	61.85	61.49	61.70	70.40
22	61.55	61.55	61.82	61.79	63.29	63.73	64.00	62.05	62.01	61.52	61.71	70.25
23	61.53	61.55	61.82	61.79	63.40	63.94	63.75	62.04	62.11	61.53	61.71	69.89
24	61.50	61.59	61.79	62.12	63.54	64.18	64.01	61.99	62.30	61.50	61.65	69.81
25	61.46	61.63	61.74	62.44	63.69	64.47	67.25	61.95	62.52	61.71	61.60	69.60
26	61.46	61.65	61.70	62.56	63.82	64.72	66.97	61.91	62.38	62.09	61.64	69.19
27	61.43	61.71	61.67	62.52	63.98	65.07	67.23	61.86	62.35	62.42	61.63	68.53
28	61.43	61.85	61.67	62.31	64.36	65.38	66.01	61.81	62.22	62.22	61.64	67.92
29	61.40	61.74	61.64	62.27	64.58	65.71	64.89	61.82	62.20	62.14	61.62	67.42
30	61.42	61.71	61.64	62.34	---	65.90	64.32	61.75	62.09	61.95	61.59	67.05
31	61.41	---	61.63	62.55	---	66.13	---	61.73	---	62.20	61.58	---
TOTAL	1914.18	1853.08	1911.14	1918.38	1834.95	1984.32	2026.02	1941.65	1852.99	1915.14	1920.47	2030.44
MEAN	61.75	61.77	61.65	61.88	63.27	64.01	67.53	62.63	61.77	61.78	61.95	67.68
MAX	62.34	62.87	61.82	62.56	64.58	66.13	73.54	63.96	62.52	62.66	62.98	70.40
MIN	61.40	61.44	61.54	61.62	62.51	63.18	63.75	61.73	61.45	61.44	61.58	61.56

WTR YR 2000 TOTAL 23102.76 MEAN 63.12 MAX 73.54 MIN 61.40

LOCATION.--Lat $30^{\circ} 35^{\prime} 43^{\prime \prime}$, long $83^{\circ} 15^{\prime} 35^{\prime \prime}$, in NW $1 / 4$ sec. 7, T. 2 N., R. 11 E., Madison County, Hydrologic Unit 03110203, on right bank 300 ft downstream from County Road 150 bridge, 0.1 mi downstream from small tributary, 0.3 mi west of Bellville, 5.6 mi east of Pinetta, and 22 mi upstream from mouth. DRAINAGE AREA.--2,120 mi^{2}, approximately.
PERIOD OF RECORD.--October 1931 to current year. Monthly discharge only for October and November 1931, published in WSP 1304.
REVISED RECORDS.--WSP 972: 1941-42. WSP 1905: Drainage area
GAGE.--Water-stage recorder. Datum of gage is 47.21 ft above National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Oct. 11, 1931 to Dec. 3, 1941, nonrecording gage at same site and datum. Dec. 3, 1941 to Aug. 2, 1972, water-stage recorder at same site and datum. Aug. 2, 1972 to Apr. 22, 1986, nonrecording gage at same site and datum.
REMARKS.--Records good above $390 \mathrm{ft}^{3} / \mathrm{s}$.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1928 reached a stage of 36.75 ft from floodmarks, discharge, $53,600 \mathrm{ft}^{3} / \mathrm{s}$.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	218	140	120	134	383	482	1530	692	123	141	114	98
2	178	263	121	132	388	540	1760	568	121	136	113	106
3	153	238	123	131	404	596	1980	450	119	130	118	104
4	144	216	125	135	412	647	2120	380	119	128	118	102
5	157	192	125	140	392	660	2070	349	121	129	141	108
6	328	170	129	141	380	648	1920	329	125	129	274	327
7	354	167	126	151	373	621	1880	308	120	125	313	1810
8	280	156	125	151	352	577	1930	286	115	114	299	2210
9	222	150	125	150	327	511	1880	268	115	101	290	2720
10	190	147	128	154	307	438	1620	247	114	96	275	3330
11	172	143	132	156	287	388	1240	227	111	91	257	4350
12	159	140	132	151	273	357	968	215	109	93	247	5140
13	152	134	138	149	260	336	764	196	109	151	242	5430
14	147	132	139	143	301	340	628	183	116	263	222	4990
15	142	135	133	135	323	334	535	181	115	234	195	3810
16	139	133	132	137	312	323	458	172	116	174	175	2550
17	138	128	132	151	334	322	406	168	111	168	159	1760
18	132	124	132	165	494	329	377	165	109	175	144	1540
19	126	122	143	170	685	359	351	161	109	163	131	1540
20	125	125	140	175	877	502	329	157	176	148	127	1460
21	128	125	140	175	1040	811	317	155	170	131	123	1410
22	126	125	142	176	1100	1110	303	152	149	112	112	1450
23	125	126	137	190	1110	1340	291	148	147	106	112	1690
24	118	128	135	211	1040	1540	347	147	141	109	105	1950
25	111	131	135	244	895	1760	1810	150	176	116	103	2130
26	109	132	132	266	708	1970	2460	148	182	159	e100	2220
27	112	128	135	264	585	2080	1840	137	158	160	e115	2400
28	112	125	135	304	521	1960	1250	135	148	155	109	2650
29	114	125	136	327	487	1630	986	134	149	147	104	2750
30	115	124	132	342	---	1400	814	129	147	127	98	2750
31	117	---	135	362	---	1360	---	124	---	122	103	---
MEAN	159	147	132	187	529	847	1172	234	131	140	166	2163
MAX	354	263	143	362	1110	2080	2460	692	182	263	313	5430
MIN	109	122	120	131	260	322	291	124	109	91	98	98
IN.	. 09	. 08	. 07	. 10	. 27	. 46	. 62	. 13	. 07	. 08	. 09	1.14

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1932-2000, BY WATER YEAR (WY)

LOCATION.--Lat $30^{\circ} 23^{\prime} 04^{\prime \prime}$, long $83^{\circ} 10^{\prime} 19^{\prime \prime}$, in $\mathrm{NE} 1 / 4 \mathrm{sec} .24$, T. 1 S., R. 11 E., Suwannee County, Hydrologic Unit 03110205 , on left bank at Ellaville, 100 ft upstream from Seaboard Air Line Railroad bridge, 200 ft downstream from Withlacoochee River, 900 ft upstream from bridge on U.S. Highway 90 , and 127 mi upstream from mouth.
DRAINAGE AREA.--6,970 mi^{2}, approximately, includes part of watershed in Okefenokee Swamp which is indeterminate.
PERIOD OF RECORD.--January 1927 to current year.
REVISED RECORDS.--WSP 1905: WDR FL-75-1: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 27.22 ft above National Geodetic Vertical Datum of 1929. Prior to June 20, 1932, nonrecording gage at same site and datum. Nov. 8, 1955 to Sept. 30, 1970, nonrecording gage 1.1 mi downstream from base gage at datum 2.67 ft lower, used as supplementary gage when flow was less than $4,800 \mathrm{ft}^{3} / \mathrm{s}$.
REMARKS.--No estimated daily discharges. Records good above $5,000 \mathrm{cfs}$, and fair below. Since Nov. 7, 1953, slight regulation at low water caused by diversions above control 0.7 mi downstream from gage by a steam-electric powerplant for cooling of condensers. Total diverted flow is returned to river below control. Records include flow of large spring on left bank about 200 ft downstream; spring flow may reverse during high stages.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1710	819	841	824	1040	1700	2950	2490	883	828	1060	825
2	1520	850	842	829	1080	1770	3070	2330	864	827	1100	812
3	1370	920	843	833	1120	1790	3180	2200	849	826	1200	815
4	1260	950	844	837	1160	1800	3300	2090	835	826	1270	825
5	1180	960	843	842	1160	1790	3370	2000	826	825	1550	840
6	1180	955	842	846	1140	1780	3400	1950	811	824	1740	1100
7	1260	950	841	851	1140	1750	3430	1890	797	823	1790	1980
8	1250	940	840	860	1130	1720	3580	1840	790	823	1750	3200
9	1200	930	839	865	1120	1680	3740	1780	793	822	1670	3820
10	1140	925	838	870	1120	1630	3870	1730	780	816	1610	4440
11	1090	920	837	863	1110	1580	3910	1680	776	804	1550	5070
12	1050	915	836	861	1100	1540	3930	1620	765	802	1470	5760
13	1010	910	835	876	1090	1500	3990	1570	758	822	1400	6300
14	981	905	834	867	1230	1470	4030	1510	769	860	1350	6530
15	955	900	833	858	1260	1460	3980	1460	784	890	1280	6350
16	932	898	832	862	1330	1450	3770	1420	759	920	1220	5720
17	912	896	832	872	1350	1430	3410	1380	737	915	1160	4890
18	887	894	831	889	1410	1410	3050	1330	737	910	1100	4450
19	842	892	830	906	1560	1400	2750	1290	725	904	1050	4690
20	822	890	829	915	1670	1460	2520	1250	720	899	1030	4740
21	816	885	828	901	1780	1580	2330	1200	740	894	1020	4630
22	815	880	828	894	1850	1790	2170	1160	760	879	994	4820
23	815	875	827	914	1890	1980	2040	1120	780	867	967	4940
24	814	870	826	917	1900	2160	1960	1110	800	871	929	5160
25	814	867	825	882	1870	2340	2420	1050	810	916	897	5380
26	813	861	824	887	1790	2540	3520	1010	815	915	898	5520
27	814	855	823	894	1740	2760	3650	983	820	935	908	5590
28	815	850	823	913	1690	2870	3390	960	830	955	894	5690
29	816	846	822	929	1680	2830	3000	941	829	980	855	5760
30	816	843	821	968	-	2800	2700	920	829	1000	834	5790
31	811		820	1010	---	2800	---	899	---	1020	819	---
MEAN	1016	895	833	882	1397	1889	3214	1489	792	877	1205	4215
MAX	1710	960	844	1010	1900	2870	4030	2490	883	1020	1790	6530
MIN	811	819	820	824	1040	1400	1960	899	720	802	819	812
IN.	. 17	. 14	. 14	. 15	. 22	. 31	. 51	. 25	. 13	. 15	. 20	. 67

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1927-2000, BY WATER YEAR (WY)

MEAN	4931	3495	4214	6296	9400	11880	11190	6130	4201	4439	5714
MAX	32940	35590	30600	21150	30720	36610	53180	25380	17800	14380	34990
(WY)	1929	1948	1948	1977	1991	1998	1948	1928	1973	1991	1928
MIN	1006	895	833	882	1189	1240	1702	1245	792	877	1010
(WY)	1991	2000	2000	2000	1957	1955	1968	1932	2000	2000	1955

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DATIY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

1863		1552	
5950	Feb 10	6530	Sep 14
811	Oct 31	720	Jun 20
814	Oct 25	740	Jun 16
		6540	Sep 14
		6.70	Sep 14
3.63		703	Jun 20
3930		3390	
1310		968	
840	816		

FOR 2000 WATER YEAR
WATER YEARS 1927 - 2000

6453				
19710			1948	
1296			1955	
94700		Apr	8	1948
720		Jun	20	2000
740	Jun	16	2000	
95300	Apr	7	1948	
40.88	Apr	7	1948	
703		Jun	20	2000
12.58				
14700				
3860				
1500				

SUWANNEE RIVER BASIN

02319500 SUWANNEE RIVER AT ELLAVILLE, FL--Continued
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.38	1.82	1.80	1.82	2.23	2.76	3.87	3.41	1.70	1.63	1.69	1.49
2	2.27	1.91	1.80	1.84	2.27	2.82	3.98	3.26	1.68	1.61	1.73	1.48
3	2.19	1.97	1.83	1.85	2.28	2.84	4.07	3.13	1.65	1.58	1.81	1.48
4	2.14	1.96	1.86	1.86	2.30	2.85	4.18	3.02	1.64	1.56	1.87	1.49
5	2.12	1.95	1.87	1.85	2.29	2.84	4.24	2.94	1.62	1.55	2.12	1.50
6	2.12	2.04	1.89	1.85	2.28	2.83	4.27	2.88	1.60	1.53	2.28	1.73
7	2.19	2.03	1.88	1.84	2.28	2.81	4.30	2.83	1.58	1.53	2.32	2.50
8	2.18	2.02	1.87	1.85	2.27	2.78	4.43	2.79	1.56	1.51	2.29	3.59
9	2.14	2.00	1.87	1.86	2.26	2.74	4.57	2.75	1.56	1.50	2.22	4.16
10	2.09	1.99	1.88	1.86	2.26	2.70	4.69	2.71	1.54	1.48	2.16	4.73
11	2.04	2.03	1.87	1.85	2.25	2.66	4.73	2.66	1.54	1.47	2.11	5.31
12	2.01	2.02	1.87	1.85	2.24	2.62	4.75	2.60	1.53	1.47	2.04	5.96
13	1.98	2.01	1.88	1.86	2.24	2.59	4.80	2.55	1.53	1.49	1.99	6.46
14	1.95	1.99	1.88	1.86	2.35	2.56	4.84	2.51	1.54	1.55	1.94	6.68
15	1.93	1.98	1.88	1.85	2.38	2.55	4.80	2.40	1.55	1.66	1.88	6.52
16	1.91	1.97	1.88	1.85	2.44	2.54	4.60	2.33	1.53	1.70	1.82	5.94
17	1.90	1.95	1.87	1.86	2.46	2.53	4.28	2.28	1.51	1.67	1.77	5.17
18	1.87	1.93	1.86	1.88	2.51	2.51	3.96	2.24	1.51	1.62	1.73	4.78
19	1.84	1.93	1.87	1.89	2.64	2.50	3.69	2.21	1.50	1.59	1.69	4.99
20	1.82	1.94	1.87	1.90	2.74	2.55	3.48	2.17	1.49	1.57	1.67	5.03
21	1.81	1.94	1.87	1.89	2.83	2.66	3.32	2.14	1.56	1.56	1.65	4.94
22	1.83	1.93	1.88	1.88	2.89	2.84	3.18	2.12	1.60	1.54	1.64	5.11
23	2.01	1.93	1.88	1.90	2.93	3.01	3.06	2.03	1.59	1.53	1.61	5.22
24	2.00	1.93	1.88	1.97	2.93	3.16	2.99	1.96	1.60	1.53	1.58	5.42
25	1.99	1.93	1.87	1.98	2.91	3.32	3.40	1.91	1.63	1.57	1.55	5.62
26	1.99	1.94	1.87	1.87	2.84	3.50	4.38	1.86	1.69	1.57	1.55	5.75
27	1.91	1.93	1.87	1.88	2.80	3.70	4.49	1.83	1.68	1.63	1.56	5.81
28	1.87	1.92	1.87	1.90	2.75	3.79	4.25	1.80	1.68	1.66	1.55	5.91
29	1.83	1.91	1.86	2.04	2.74	3.76	3.88	1.78	1.67	1.69	1.52	5.98
30	1.81	1.89	1.86	2.17	-	3.73	3.61	1.75	1.66	1.67	1.50	6.00
31	1.81	---	1.84	2.19	---	3.73	---	1.72	---	1.66	1.49	---
TOTAL	61.93	58.69	57.83	58.80	72.59	90.78	123.09	74.57	47.72	48.88	56.33	136.75
MEAN	2.00	1.96	1.87	1.90	2.50	2.93	4.10	2.41	1.59	1.58	1.82	4.56
MAX	2.38	2.04	1.89	2.19	2.93	3.79	4.84	3.41	1.70	1.70	2.32	6.68
MIN	1.81	1.82	1.80	1.82	2.23	2.50	2.99	1.72	1.49	1.47	1.49	1.48

CAL YR 1999 TOTAL 974.43 MEAN 2.68 MAX 7.00 MIN 1.76
WTR YR 2000 TOTAL 887.96 MEAN 2.43 MAX 6.68 MIN 1.47

LOCATION.--Lat $30^{\circ} 14^{\prime} 41^{\prime \prime}$, long $83^{\circ} 14^{\prime} 41^{\prime \prime}$, in $\mathrm{NW} /{ }^{1} / 4 \mathrm{sec} .8$, T. 3 S., R. 11 E., Lafayette County, Hydrologic Unit 03110205, at bridge on County Road 250 at Dowling Park, and 112 mi upstream from mouth.
DRAINAGE AREA.--7,190 mi^{2}, approximately, includes part of watershed in Okefenokee Swamp which is indeterminate.
PERIOD OF RECORD.--March 1950 to August 1954 and November 1975 to October 1977 (annual maximum discharge and gage-height), October 1996 to current year.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.
REMARKS.--Records poor.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 7, 1948, reached a stage of 61.46 ft , from floodmarks; discharge, $92,600 \mathrm{ft}^{3} / \mathrm{s}$.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1720	1250	1170	e1100	1320	1760	2860	2640	1100	e1110	e1120	967
2	1670	1250	1160	e1090	1350	1830	3010	2460	1090	e1100	e1130	986
3	1620	1260	1160	e1080	1380	1850	3070	2300	1060	1090	e1140	979
4	1570	1280	1160	e1070	e1370	1880	3220	2160	1030	e1080	1160	983
5	1540	1300	1150	e1060	1360	1850	3300	2050	1010	e1060	e1250	999
6	1510	1320	1150	1050	e1360	1840	e3340	1960	1030	1050	e1400	1160
7	1540	1340	1150	e1050	1370	1830	3370	1900	1020	e1030	1560	1400
8	1530	1350	1130	e1050	1370	1800	3500	1860	1000	e1020	e1540	2490
9	1510	1350	1120	e1060	1360	1750	e3620	1810	999	e1000	e1480	3130
10	1480	1340	1110	e1060	1370	1720	3730	1760	994	980	1420	3650
11	1460	1320	e1120	e1070	1370	1670	3830	1710	995	e985	e1360	4130
12	1430	1310	e1130	e1080	1310	1630	3860	1650	996	e995	e1310	4640
13	1400	1300	e1150	1090	1290	1590	3900	1590	987	1000	e1250	5090
14	1370	1290	e1140	e1080	1400	1570	3950	1540	987	e1030	e1190	5370
15	1340	1280	e1130	e1090	1460	1570	3960	1500	996	e1060	e1130	5390
16	1320	1260	e1140	e1090	1530	1560	3860	1460	e985	e1090	e1070	5090
17	1310	1260	e1150	e1090	1600	1540	3630	1440	e975	1120	1020	4600
18	1290	1250	e1140	1090	1660	1510	3310	1420	e965	e1090	e1020	4210
19	1280	1250	e1130	e1090	1720	1530	3020	1390	958	e1050	e1020	4170
20	1270	1240	e1140	1090	1790	1530	2770	1350	e975	1010	e1030	4270
21	1280	1230	e1150	1080	1850	1550	2570	1320	e990	e995	1030	4190
22	1280	1230	e1150	1080	1910	1700	2390	1310	1010	e980	1020	4260
23	1270	1220	e1150	1080	1960	1880	2250	1300	e1030	e1000	e1010	4360
24	1250	1210	e1140	1090	1980	2040	2160	1270	e1060	e1020	996	4490
25	1250	1200	e1140	1100	1940	2200	2240	1240	e1080	e1040	991	4660
26	1250	1200	e1140	1240	1900	2760	3180	1220	1100	e1060	983	4780
27	1250	1200	e1140	1270	1860	2810	3560	1190	e1110	1080	985	4850
28	1250	1190	e1130	1280	1830	e2820	3500	1170	e1120	e1090	979	4930
29	1260	1190	e1130	1290	1770	e2830	3200	1160	e1130	e1100	968	4990
30	1260	1190	e1120	e1300	---	e2840	2890	1140	e1120	e1110	958	5030
31	1260	-	e1110	e1310	---	e2850	---	1120	---	1100	951	---
MEAN	1388	1262	1140	1118	1577	1938	3235	1593	1030	1049	1144	3675
MAX	1720	1350	1170	1310	1980	2850	3960	2640	1130	1120	1560	5390
MIN	1250	1190	1110	1050	1290	1510	2160	1120	958	980	951	967
IN.	. 22	. 20	. 18	. 18	. 24	. 31	. 50	. 26	. 16	. 17	. 18	. 57

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997-2000, BY WATER YEAR (WY)

MEAN	5075	4708	5015	7025	9875	13930	6912	3626	2352	2171	2600
MAX	10700	10650	13190	18280	22750	38110	17010	6430	4165	3995	5699
(WY)	1999	1998	1998	1998	1998	1998	1998	1998	1997	1997	1997
MIN	1388	1262	1140	1118	1577	1938	2047	1409	1030	1049	1144
(WY)	2000	2000	2000	2000	2000	2000	1999	1999	2000	2000	2000

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

1985		
6040	Feb	10
1010	Sep	13
1020	Sep	11
3.75		
4080		
1370		
1130		

FOR 2000 WATER YEAR

1673		
5390	Sep 15	
951	Aug 31	
970	Aug 28	
5430	Sep	14
27.45	Sep	14
947	Aug	30
3.17		
3300		
1270		
1010		

WATER YEARS 1997 - 2000

5474			
11550		1998	
1673		2000	
53100	Mar 20	1998	
951	Aug 31	2000	
970	Aug 28 2000		
53500	Mar 20	1998	
54.07	Mar 20	1998	
947	Aug 30	2000	
10.34			
14100			
2950			
1130			

02319800 SUWANNEE RIVER AT DOWLING PARK, FL--Continued
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22.56	21.80	21.66	---	21.92	22.62	24.21	23.91	21.54	---	---	21.31
2	22.48	21.80	21.65	---	21.96	22.72	24.42	23.65	21.53	---		21.34
3	22.40	21.82	21.65	---	22.01	22.75	24.50	23.42	21.48	21.53	---	21.33
4	22.32	21.85	21.64	---	---	22.80	24.70	23.22	21.42	---	21.65	21.34
5	22.27	21.88	21.63	---	21.98	22.76	24.81	23.06	21.39	---	---	21.36
6	22.23	21.92	21.62	21.49	---	22.74	---	22.93	21.41	21.45	---	21.64
7	22.28	21.95	21.62	---	22.00	22.72	24.90	22.84	21.41	---	22.31	22.03
8	22.25	21.97	21.60	---	22.00	22.68	25.07	22.77	21.37	---	---	23.70
9	22.22	21.96	21.58	---	21.98	22.61	--	22.69	21.36	--	---	24.58
10	22.18	21.94	21.56	---	21.99	22.55	25.37	22.62	21.36	21.33	22.08	25.27
11	22.15	21.92	---	---	21.99	22.48	25.50	22.54	21.36	---	---	25.88
12	22.10	21.90	---	---	21.89	22.42	25.53	22.44	21.36	---	---	26.51
13	22.05	21.88	---	21.52	21.86	22.35	25.58	22.35	21.34	21.37	---	27.05
14	22.00	21.86	---	---	22.04	22.32	25.65	22.27	21.34	---	---	27.37
15	21.95	21.84	---	---	22.15	22.32	25.66	22.20	21.36	---	---	27.39
16	21.91	21.82	---	---	22.26	22.30	25.53	22.15	---	--	---	27.04
17	21.89	21.81	---	---	22.37	22.28	25.23	22.12	---	21.57	21.40	26.45
18	21.87	21.80	---	21.52	22.47	22.22	24.83	22.08	---	---	---	25.98
19	21.85	21.79	---	---	22.56	22.25	24.44	22.02	21.29	---	---	25.93
20	21.83	21.78	---	21.53	22.66	22.25	24.09	21.97	---	21.39	---	26.05
21	21.84	21.77	---	21.50	22.75	22.29	23.81	21.92	--	---	21.42	25.95
22	21.85	21.76	---	21.50	22.85	22.53	23.56	21.89	21.38	---	21.40	26.04
23	21.83	21.74	---	21.50	22.92	22.80	23.36	21.88	---	---		26.16
24	21.79	21.73	---	21.53	22.96	23.04	23.23	21.83	---	---	21.36	26.33
25	21.79	21.72	---	21.54	22.90	23.28	23.34	21.79	---	---	21.35	26.52
26	21.80	21.71	---	21.78	22.84	24.07	24.64	21.75	21.55	---	21.33	26.67
27	21.80	21.71	---	21.83	22.78	24.15	25.15	21.70	---	21.50	21.34	26.76
28	21.80	21.70	---	21.84	22.72	---	25.07	21.67	---	---	21.33	26.85
29	21.81	21.69	---	21.86	22.63	---	24.68	21.64	---	---	21.31	26.93
30	21.81	21.69	---	---	--	---	24.26	21.61	---	---	21.29	26.97
31	21.81	---	---	---	---	---	---	21.57	-	21.54	21.28	-
MEAN	22.02	21.82	---	---	---	---	---	22.34	---	---	---	25.16
MAX	22.56	21.97	---	---	---	---	---	23.91	---	---	---	27.39
MIN	21.79	21.69	---	---	---	---	---	21.57	---	---	---	21.31

LOCATION.--Lat $30^{\circ} 05^{\prime} 59^{\prime \prime}$, long $83^{\circ} 10^{\prime} 18^{\prime \prime}$, in $\mathrm{NE} / \frac{1}{4} \sec .36$, T. 4 S., R. 11 E., Suwannee County, Hydrologic Unit 03110205, at bridge on State Highway 51 , 1.6 mi south of Luraville, 3.0 mi north of Mayo, and 97 mi upstream from mouth.

DRAINAGE AREA.--7,330 mi^{2}, approximately, includes part of watershed in Okefenokee Swamp which is indeterminate.
PERIOD OF RECORD.--February 1927 to December 1937, March 1950 to October 1972 and October 1977 to September 1981 (annual maximum discharge and gage-height). October 1996 to current year.
GAGE.--Water-stage recorder. Datum of gage is National Vertical Datum of 1929 (Florida Department of Transportation Benchmark).
REMARKS.--Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2040	1300	1220	1150	1330	1780	3050	2940	1160	1130	1200	1120
2	1980	1340	1210	1150	1360	1810	3150	2780	1150	1120	1210	1140
3	1880	1400	1200	1150	1380	1850	3250	2590	1140	1110	1230	1110
4	1800	1460	1190	1150	1390	1870	3360	2370	1120	1100	1260	1110
5	1750	1470	1190	1150	1400	1880	3440	2210	1120	1100	1320	1120
6	1720	1440	1190	1150	1390	1870	3480	2080	1120	1090	1470	1230
7	1750	1420	1190	1140	1380	1850	3490	1980	1110	1090	1560	1280
8	1780	1400	1180	1140	1380	1810	3550	1900	1100	1090	1570	2320
9	1750	1380	1180	1150	1380	1780	3660	1820	1090	1080	1540	3140
10	1690	1360	1170	1150	1370	1750	3770	1780	1080	1070	1490	3620
11	1640	1350	1180	1150	1360	1700	3840	1730	1080	1060	1440	4040
12	1600	1340	1170	1140	1360	1660	3870	1680	1090	1070	1410	4510
13	1560	1330	1170	1140	1350	1610	3910	1630	1080	1080	1360	4950
14	1520	1310	1180	1150	1410	1590	3960	1600	1070	1080	1320	5270
15	1500	1300	1170	1140	1460	1580	3970	1560	1080	1100	1290	5360
16	1470	1290	1170	1140	1480	1570	3920	1510	1080	1130	1250	5220
17	1430	1280	1170	1140	1520	1570	3740	1470	1070	1150	1230	4860
18	1410	1270	1160	1140	1530	1540	3500	1440	1060	1130	1200	4530
19	1390	1260	1160	1150	1590	1530	3260	1400	1060	1110	1190	4400
20	1370	1260	1160	1150	1700	1540	3040	1370	1050	e1100	1190	4530
21	1360	1270	1170	1150	1780	1580	2860	1340	1070	e1080	1170	4500
22	1340	1270	1170	1150	1880	1700	2700	1330	1080	e1070	1160	4540
23	1310	1260	1170	1160	1970	1870	2480	1320	1100	e1050	1150	4630
24	1300	1260	1160	1200	2000	2090	2280	1290	1100	e1100	1140	4730
25	1300	1260	1160	1190	2000	2310	2290	1270	1100	e1130	1130	4870
26	1290	1260	1160	1240	1940	2580	3100	1250	1120	1150	1130	5000
27	1290	1260	1160	1260	1860	2810	3540	1230	1130	1150	1130	5070
28	1300	1240	1160	1280	1830	2940	3570	1210	1130	1180	1130	5140
29	1300	1230	1150	1290	1780	2990	3390	1200	1140	1190	1120	5210
30	1290	1220	1150	1300	---	3000	3150	1190	1140	1200	1120	5260
31	1280	---	1150	1310	---	3020	---	1170	---	1190	1110	---
MEAN	1529	1316	1173	1176	1571	1969	3352	1666	1101	1112	1265	3794
MAX	2040	1470	1220	1310	2000	3020	3970	2940	1160	1200	1570	5360
MIN	1280	1220	1150	1140	1330	1530	2280	1170	1050	1050	1110	1110
IN.	. 24	. 20	. 19	. 19	. 23	. 31	. 51	. 26	. 17	. 18	. 20	. 58

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1927-2000, BY WATER YEAR (WY)

MEAN	7937	4694	4254	5541	8360	10620	9953	6509	3817	3929	6476
MAX	31460	12180	13710	18570	22980	34680	24050	24060	8453	11430	32590
(WY)	1929	1929	1998	1998	1998	1998	1930	1928	1928	1928	1928
MIN	1529	1316	1173	1176	1565	1969	2248	1599	1101	1112	1265
(WY)	2000	2000	2000	2000	1934	2000	1934	1999	2000	2000	2000

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1927 - 2000
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHPST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

2160		
5760		Feb 10
1150		Dec 29
1160		Dec 25
4.03		
4160		
1600		
1260		

1746	
5360	Sep 15
1050	Jun 20
1070	Jun 14
5380	Sep 15
22.24	Sep 15
1050	Jun 20
3.27	
3450	
1300	
1110	

6743			
12570			1929
1746			2000
66000		Aug 24	1928
1050		Jun 20	2000
1070		Jun 14	2000
90000	Apr	8	1948
53.50	Apr	8	1948
1050		Jun 20	2000
12.58			
15400			
4050			
1590			

e Estimated

02320000 SUWANNEE RIVER AT LURAVILLE, FL--Continued
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18.42	17.51	17.38	17.27	17.63	18.32	19.61	19.46	17.28	17.20	17.36	17.19
2	18.35	17.57	17.37	17.26	17.68	18.37	19.74	19.23	17.25	17.18	17.39	17.23
3	18.25	17.66	17.35	17.25	17.71	18.42	19.87	19.05	17.23	17.17	17.45	17.17
4	18.17	17.73	17.33	17.25	17.73	18.44	20.02	18.88	17.19	17.15	17.51	17.17
5	18.11	17.75	17.34	17.27	17.74	18.44	20.11	18.74	17.18	17.13	17.60	17.18
6	18.08	17.71	17.35	17.25	17.72	18.44	20.16	18.62	17.18	17.13	17.85	17.43
7	18.11	17.68	17.34	17.24	17.71	18.42	20.18	18.54	17.17	17.13	18.00	17.54
8	18.15	17.65	17.33	17.25	17.71	18.38	20.25	18.46	17.15	17.11	18.01	18.81
9	18.11	17.63	17.32	17.25	17.70	18.33	20.39	18.39	17.12	17.10	17.96	19.73
10	18.05	17.60	17.31	17.25	17.68	18.28	20.52	18.32	17.11	17.07	17.88	20.33
11	17.98	17.58	17.32	17.25	17.68	18.22	20.60	18.26	17.10	17.06	17.81	20.84
12	17.93	17.57	17.31	17.25	17.67	18.15	20.64	18.18	17.11	17.06	17.75	21.35
13	17.88	17.54	17.31	17.24	17.66	18.07	20.68	18.11	17.09	17.09	17.67	21.81
14	17.82	17.52	17.33	17.26	17.75	18.04	20.74	18.05	17.08	17.09	17.61	22.13
15	17.79	17.51	17.31	17.23	17.83	18.02	20.76	17.99	17.10	17.15	17.55	22.21
16	17.75	17.49	17.31	17.23	17.87	18.00	20.69	17.92	17.09	17.22	17.49	22.08
17	17.69	17.48	17.30	17.24	17.93	18.00	20.48	17.86	17.06	17.26	17.43	21.72
18	17.67	17.46	17.29	17.24	17.95	17.96	20.19	17.80	17.05	17.21	17.38	21.37
19	17.63	17.45	17.29	17.27	18.05	17.94	19.89	17.74	17.04	17.17	17.34	21.23
20	17.61	17.45	17.29	17.26	18.20	17.96	19.60	17.69	17.03	---	17.35	21.37
21	17.60	17.47	17.30	17.26	18.32	18.03	19.34	17.64	17.06	---	17.31	21.34
22	17.56	17.46	17.31	17.25	18.45	18.21	19.15	17.62	17.09	---	17.28	21.38
23	17.53	17.44	17.29	17.27	18.52	18.43	18.96	17.60	17.15	---	17.26	21.48
24	17.51	17.44	17.28	17.38	18.56	18.63	18.80	17.56	17.13	---	17.23	21.59
25	17.50	17.45	17.29	17.36	18.55	18.82	18.81	17.52	17.14	---	17.22	21.73
26	17.50	17.45	17.27	17.46	18.50	19.04	19.68	17.47	17.19	17.26	17.21	21.86
27	17.50	17.44	17.27	17.51	18.43	19.28	20.24	17.43	17.21	17.26	17.20	21.93
28	17.51	17.42	17.27	17.54	18.39	19.46	20.27	17.39	17.21	17.32	17.20	22.00
29	17.50	17.40	17.27	17.55	18.33	19.53	20.06	17.36	17.23	17.35	17.19	22.07
30	17.49	17.39	17.26	17.56	- - -	19.54	19.74	17.35	17.23	17.38	17.18	22.12
31	17.49	---	17.26	17.60	---	19.57	---	17.31	---	17.34	17.16	-
TOTAL	552.24	525.90	536.55	536.75	521.65	572.74	600.17	559.54	514.25	---	541.83	613.39
MEAN	17.81	17.53	17.31	17.31	17.99	18.48	20.01	18.05	17.14	---	17.48	20.45
MAX	18.42	17.75	17.38	17.60	18.56	19.57	20.76	19.46	17.28	-	18.01	22.21
MIN	17.49	17.39	17.26	17.23	17.63	17.94	18.80	17.31	17.03	---	17.16	17.17

LOCATION.--Lat $29^{\circ} 57^{\prime} 20^{\prime \prime}$, long $82^{\circ} 55^{\prime} 40^{\prime \prime}$, in $\mathrm{NE}^{1} / 4 \mathrm{sec} .20$, T. 6 S., R. 14 E., Suwannee County, Hydrologic Unit 03110205, near left bank on upstream side of bridge on U.S. Highway 27 at Branford, 10.2 mi upstream from Santa Fe River and 75 mi upstream from mouth.
DRAINAGE AREA.--7,880 mi^{2}, includes part of watershed in Okefenokee Swamp which is indeterminate.
PERIOD OF RECORD.--July 1931 to current year.
REVISED RECORDS.--WSP 1905: WDR FL-75-1: Drainage area. WDR FL-96-4:1995.
GAGE.--Water-stage recorder. Datum of gage is 4.81 ft above National Geodetic Vertical Datum of 1929.
REMARKS.--No estimated daily discharges, records good. Maximum discharge, $4,750 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 30, stage rising; peak occurred Oct. 1, 2000, discharge $4,760 \mathrm{ft}^{3} / \mathrm{s}$, gage height, 8.32 ft ; maximum independent peak discharge, $3,830 \mathrm{ft}^{3} / \mathrm{s}$, Apr. 15 , gage height, 6.87 ft .
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 1928 reached a stage of 32.0 ft , from floodmark; discharge, $65,000 \mathrm{ft}^{3} / \mathrm{s}$ computed on basis of measured crest flow at Ellaville (station 02319500).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2350	2020	1850	1670	1820	2420	3100	3090	1530	1700	1620	1600
2	2360	2070	1850	1660	1840	2430	3160	2940	1520	1670	1630	1630
3	2330	2060	1850	1660	1860	2450	3240	2810	1520	1660	1650	1620
4	2310	2080	1840	1660	1890	2470	3330	2700	1510	1650	1680	1600
5	2280	2100	1840	1660	1900	2480	3380	2600	1500	1630	1700	1610
6	2260	2100	1850	1640	1910	2470	3420	2510	1500	1630	1780	1680
7	2240	2090	1840	1640	1920	2460	3450	2440	1490	1630	1870	1720
8	2260	2080	1820	1630	1930	2450	3490	2380	1460	1630	1910	2000
9	2270	2070	1810	1640	1930	2440	3540	2330	1440	1610	1910	2570
10	2260	2070	1810	1660	1940	2420	3610	2270	1450	1600	1840	2980
11	2230	2050	1800	1650	1950	2400	3680	2220	1460	1590	1800	3330
12	2210	2040	1790	1640	1970	2380	3720	2170	1460	1580	1790	3680
13	2180	2020	1800	1630	1970	2330	3750	2110	1450	1590	1770	4020
14	2160	2010	1820	1620	2020	2300	3780	2060	1450	1590	1730	4310
15	2130	2000	1780	1610	2060	2290	3810	2020	1450	1590	1700	4500
16	2110	1990	1760	1620	2070	2310	3820	1960	1440	1620	1670	4520
17	2090	1980	1740	1620	2110	2310	3760	1910	1440	1660	1640	4440
18	2080	1960	1730	1630	2140	2280	3630	1880	1430	1640	1620	4350
19	2070	1960	1740	1640	2180	2260	3460	1840	1420	1620	1610	4130
20	2070	1970	1730	1640	2240	2270	3290	1800	1420	1620	1610	4180
21	2060	1970	1730	1630	2300	2280	3160	1770	1440	1580	1590	4230
22	2050	1960	1730	1620	2360	2320	3030	1750	1470	1560	1570	4240
23	2040	1950	1710	1650	2430	2400	2910	1730	1500	1550	1550	4310
24	2030	1940	1690	1710	2470	2500	2830	1710	1540	1550	1540	4370
25	2020	1940	1690	1690	2500	2600	2770	1680	1550	1550	1540	4450
26	2020	1940	1690	1680	2500	2720	2920	1650	1580	1550	1540	4540
27	2020	1920	1680	1720	2480	2860	3300	1630	1620	1560	1560	4590
28	2030	1900	1680	1740	2460	2970	3460	1610	1650	1580	1590	4640
29	2020	1880	1680	1760	2430	3030	3430	1590	1680	1600	1590	4690
30	2010	1870	1670	1790	---	3060	3260	1570	1710	1620	1580	4730
31	2010	---	1670	1810	-	3090	---	1550	---	1620	1580	---
MEAN	2147	2000	1764	1665	2123	2498	3383	2074	1503	1607	1670	3509
MAX	2360	2100	1850	1810	2500	3090	3820	3090	1710	1700	1910	4730
MIN	2010	1870	1670	1610	1820	2260	2770	1550	1420	1550	1540	1600
MED	2110	2000	1760	1650	2060	2430	3420	1960	1480	1610	1630	4200
IN.	. 31	. 28	. 26	. 24	. 29	. 37	. 48	. 30	. 21	. 24	. 24	. 50

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931-2000, BY WATER YEAR (WY)

MEAN	5449	4389	4761	6469	9275	11900	11670	7357	5349	5208	6072
MAX	21020	29380	28130	21830	28370	36930	49040	24020	18120	13510	19810
(WY)	1965	1948	1948	1948	1991	1998	1948	1973	1973	1991	1945
MIN	1778	1666	1602	1623	1699	1905	2366	1937	1503	1607	1670
(WY)	1991	1991	1991	1956	1957	1955	1955	1932	2000	2000	2000

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR
2728

2728		2157		6983		
				19260		1948
				1950		1955
5950	Feb 12	4730	Sep 30	82800	Apr 1	1948
1670	Dec 30	1420	Jun 19	1420	Jun 1	2000
1680	Dec 25	1430	Jun 15	1430	Jun 1	2000
				83900	Apr 1	1948
		6.87	Apr 15	34.07	Apr 1	1948
		1410	Jun 20	1410	Jun 20	2000
4.70		3.73		12.04		
4580		3340		14500		
2180		1910		4900		
1900		1560		2300		

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.40	3.68	3.45	3.16	3.39	4.16	5.57	5.63	2.96	2.92	2.71	2.66
2	4.43	3.79	3.45	3.15	3.42	4.18	5.68	5.38	2.93	2.87	2.74	2.76
3	4.38	3.78	3.46	3.13	3.46	4.24	5.84	5.16	2.91	2.83	2.80	2.72
4	4.32	3.82	3.45	3.14	3.50	4.28	6.00	4.96	2.89	2.79	2.88	2.68
5	4.26	3.87	3.45	3.13	3.52	4.29	6.09	4.80	2.86	2.76	2.93	2.69
6	4.21	3.87	3.49	3.09	3.51	4.27	6.16	4.65	2.87	2.75	3.13	2.87
7	4.18	3.85	3.46	3.08	3.50	4.26	6.22	4.54	2.83	2.75	3.36	2.97
8	4.21	3.83	3.42	3.08	3.50	4.23	6.28	4.44	2.76	2.74	3.45	3.60
9	4.23	3.82	3.41	3.10	3.50	4.21	6.37	4.36	2.72	2.71	3.44	4.79
10	4.22	3.82	3.41	3.14	3.49	4.17	6.50	4.28	2.73	2.67	3.27	5.55
11	4.16	3.80	3.40	3.12	3.49	4.12	6.62	4.20	2.75	2.64	3.17	6.15
12	4.10	3.76	3.38	3.08	3.50	4.08	6.69	4.11	2.75	2.62	3.14	6.71
13	4.05	3.73	3.41	3.07	3.48	3.97	6.74	4.01	2.74	2.65	3.10	7.24
14	4.00	3.71	3.44	3.04	3.57	3.90	6.79	3.94	2.73	2.64	3.00	7.67
15	3.94	3.71	3.36	3.03	3.64	3.88	6.85	3.87	2.73	2.65	2.92	7.93
16	3.88	3.68	3.32	3.03	3.63	3.91	6.86	3.77	2.72	2.73	2.84	7.96
17	3.84	3.65	3.29	3.04	3.70	3.93	6.76	3.69	2.71	2.83	2.78	7.82
18	3.83	3.63	3.27	3.07	3.73	3.84	6.53	3.63	2.69	2.79	2.73	7.68
19	3.81	3.62	3.29	3.08	3.80	3.80	6.23	3.58	2.67	2.73	2.69	7.32
20	3.79	3.65	3.28	3.09	3.91	3.84	5.93	3.51	2.65	2.73	2.70	7.41
21	3.78	3.67	3.28	3.06	4.02	3.86	5.68	3.46	2.67	2.61	2.64	7.48
22	3.75	3.66	3.29	3.04	4.14	3.95	5.43	3.44	2.70	2.56	2.59	7.51
23	3.73	3.63	3.25	3.11	4.25	4.13	5.20	3.43	2.75	2.55	2.55	7.61
24	3.71	3.61	3.22	3.27	4.32	4.35	5.04	3.37	2.80	2.53	2.52	7.71
25	3.69	3.61	3.20	3.20	4.36	4.57	4.90	3.32	2.78	2.54	2.51	7.84
26	3.69	3.62	3.19	3.19	4.35	4.81	5.20	3.25	2.81	2.55	2.52	7.99
27	3.69	3.59	3.19	3.25	4.31	5.09	5.94	3.19	2.88	2.56	2.58	8.06
28	3.70	3.55	3.19	3.29	4.26	5.30	6.24	3.14	2.90	2.61	2.64	8.14
29	3.68	3.52	3.18	3.33	4.18	5.43	6.19	3.09	2.92	2.67	2.63	8.22
30	3.67	3.48	3.16	3.36	---	5.49	5.92	3.03	2.97	2.73	2.61	8.27
31	3.67	---	3.15	3.39	---	5.54	---	2.99	---	2.73	2.61	-
TOTAL	123.00	111.01	103.19	97.34	109.43	134.08	182.45	122.22	83.78	83.44	88.18	186.01
MEAN	3.97	3.70	3.33	3.14	3.77	4.33	6.08	3.94	2.79	2.69	2.84	6.20
MAX	4.43	3.87	3.49	3.39	4.36	5.54	6.86	5.63	2.97	2.92	3.45	8.27
MIN	3.67	3.48	3.15	3.03	3.39	3.80	4.90	2.99	2.65	2.53	2.51	2.66

CAL YR 1999 TOTAL 1803.19 MEAN 4.94 MAX 9.97 MIN 3.15
WTR YR 2000 TOTAL 1424.13 MEAN 3.89 MAX 8.27 MIN 2.51

LOCATION.--Lat $29^{\circ} 59^{\prime} 53^{\prime \prime}$, long $82^{\circ} 16^{\prime} 27^{\prime \prime}$, in $\mathrm{SW}{ }^{1} / 4 \mathrm{sec} .2$, T. 6. S., R. 20 E., Union County, Hydrologic unit 03110206, near right bank on downstream side of bridge on State Highway 100, 4.4 miles southeast of Lake Butler.
DRAINAGE AREA.--191 mi ${ }^{2}$.
PERIOD OF RECORD.--January 1950 to September 1971, June 1973 to May 1977, periodic discharge measurements. October 1990 to September 1991, October 1992 to current year.
REVISED RECORDS.--WRD FLA. 1968 Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 83.8 ft above National Geodetic Vertical Datum of 1929.
REMARKS.--Records good, except for estimated daily discharge, which are fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.9	. 09	. 41	1.8	e5.8	3.2	40	. 47	. 00	2.5	63	13
2	1.4	. 64	. 29	1.8	e5.6	2.6	16	. 42	. 00	2.5	128	16
3	1.1	1.0	. 26	1.9	e5.1	2.1	11	. 19	. 00	1.7	143	41
4	1.1	1.1	. 22	1.9	e4.7	1.8	11	. 11	. 00	1.2	89	41
5	2.0	. 67	. 23	1.9	e4.5	2.0	9.7	. 06	. 00	. 81	70	27
6	8.4	. 39	. 53	1.8	e4.1	2.2	7.8	. 04	. 00	. 41	67	30
7	13	. 26	1.0	1.8	e3. 8	2.1	6.2	. 03	. 00	. 36	69	88
8	7.7	. 15	1.0	1.8	e3. 5	2.0	5.2	. 02	. 00	. 10	61	106
9	6.0	. 10	1.1	1.9	e3.4	2.0	4.4	. 01	. 00	. 03	48	101
10	5.5	. 08	1.1	2.2	e3. 3	2.0	3.8	. 01	. 00	. 02	43	139
11	5.4	. 07	1.2	2.1	e3.0	2.0	3.3	. 01	. 00	. 02	31	166
12	4.9	. 07	1.2	1.8	e2.9	2.1	2.9	. 01	. 00	1.3	25	e185
13	4.1	. 07	1.3	1.8	e2. 8	2.1	2.6	. 01	. 00	2.4	37	151
14	3.4	. 07	1.8	2.1	e3. 2	2.0	2.6	. 01	. 00	2.0	27	121
15	3.1	. 07	1.8	2.1	4.2	1.9	3.0	. 01	. 00	1.8	17	89
16	3.2	. 07	2.0	2.2	4.3	1.9	3.2	. 00	. 00	6.2	12	65
17	3.9	. 06	2.1	2.1	4.0	2.0	3.1	. 00	. 00	23	9.2	52
18	4.4	. 06	2.1	2.1	3.7	2.1	2.7	. 00	. 00	19	7.4	86
19	4.8	. 07	2.3	2.2	3.4	2.1	2.3	. 00	. 02	8.4	6.0	90
20	5.6	. 07	2.6	2.2	3.2	2.2	2.1	. 00	3.5	4.5	5.4	74
21	5.8	. 07	2.6	e2.1	3.0	2.2	1.9	. 00	11	3.3	9.1	63
22	5.2	. 08	2.6	e2.1	3.0	2.1	1.6	. 00	4.4	5.7	8.4	53
23	4.0	. 14	2.4	e2.0	3.0	1.8	1.5	. 00	2.7	4.4	6.4	47
24	2.9	. 46	2.3	e5.3	2.6	1.5	1.4	. 00	20	3.2	5.2	45
25	1.9	. 79	2.1	e10	2.5	1.3	1.3	. 00	23	2.7	4.4	40
26	1.2	1.0	2.0	e11	2.5	1.2	1.1	. 00	7.8	19	5.6	35
27	. 88	1.0	1.9	e7.8	2.6	1.3	1.1	. 00	3.6	24	11	31
28	. 43	1.2	1.8	e6. 2	3.4	1.4	1.0	. 00	2.2	18	7.0	28
29	. 22	. 78	1.8	e4.5	3.9	1.2	. 91	. 00	1.7	52	5.0	24
30	. 12	. 46	1.8	e4.3	---	5.8	. 59	. 00	1.6	62	4.9	22
31	. 09	---	1.8	e5.2	---	36	--	. 00	--	69	16	---
MEAN	3.67	. 37	1.54	3.23	3.62	3.17	5.18	. 045	2.72	11.0	33.6	69.0
MAX	13	1.2	2.6	11	5.8	36	40	. 47	23	69	143	185
MIN	. 09	. 06	. 22	1.8	2.5	1.2	. 59	. 00	. 00	. 02	4.4	13
IN.	. 02	. 00	. 01	. 02	. 02	. 02	. 03	. 00	. 02	. 07	. 20	. 40

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1950-2000, BY WATER YEAR (WY)

MEAN	250	46.0	113	133	275	264	138	104	80.7	149	254	247
MAX	1461	459	781	607	1836	1491	1014	801	556	519	772	1845
(WY)	1993	1970	1954	1970	1998	1959	1991	1959	1957	1950	1970	1964
MIN	1.53	. 37	1.54	3.23	3.62	3.17	2.52	. 045	. 52	1.06	1.32	. 73
(WY)	1991	2000	2000	2000	2000	2000	1956	2000	1998	1999	1999	1999

SUMMARY STATISTICS

ANNUAL MEAN	11.7	
HIGHEST ANNUAL MEAN		
LOWEST ANNUAL MEAN	222	Feb
HIGHEST DAILY MEAN	.06	Nov
LOWEST DAILY MEAN	.07	Nov
ANNUAL SEVEN-DAY MINIMUM		
INSTANTANEOUS PEAK FLOW		
INSTANTANEOUS PEAK STAGE		
INSTANTANEOUS LOW FLOW		
ANNUAL RUNOFF (INCHES)	18	
10 PERCENT EXCEEDS		
50 PERCENT EXCEEDS	1.9	
90 PERCENT EXCEEDS	.19	

FOR 2000 WATER YEAR

11.4	
e185	
.00	Sep
.00	May 12
e185	May
	Sep 16
.00	May

WATER YEARS 1950 - 2000

171	
457	1970
9.66	1962
10400	Sep 131964
. 00	May 162000
. 00	May 162000
11400	Sep 121964
15.33	Sep 121964
. 00	May 162000
12.16	
435	
30	
2.9	

e Estimated

LOCATION.--Lat $29^{\circ} 55^{\prime} 18^{\prime \prime}$, long $82^{\circ} 25^{\prime} 35^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{sec} .32$, T. 6 S., R. 19 E., Alachua County, Hydrologic Unit 03110206 , near center of span on downstream side of bridge on State Highway 121, 0.5 mi south of Worthington Springs, 0.8 mi downstream from New River, and 51 mi upstream from mouth. DRAINAGE AREA.--575 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1931 to current year. Published as "near Worthington" prior to October 1965. Monthly discharge only for October 1931, published in WSP 1304.
REVISED RECORDS.--WSP 2105: WDR FL-76-4: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 42.74 ft above National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Jan. 16, 1939, nonrecording gage at site 0.2 mi downstream at present datum; Jan. 16, 1939 to July 23, 1953, nonrecording gage at present site and datum.
REMARKS.--Records good. Records do not include diversions during periods of high stages from Santa Fe Lake to Lochloosa Creek in St. Johns River Basin.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	106	8.4	6.1	9.1	44	17	149	4.1	. 00	27	88	14
2	68	20	5.4	9.2	43	16	123	3.6	. 00	20	99	25
3	47	23	5.1	9.2	39	16	87	3.1	. 00	15	126	32
4	37	22	5.3	9.1	36	15	59	2.6	. 00	12	160	45
5	34	18	5.4	8.9	34	15	46	2.3	. 00	9.3	169	57
6	35	15	5.5	8.6	31	14	39	e2.0	. 00	7.4	138	65
7	34	12	5.4	9.1	29	14	35	e1.7	. 00	6.3	109	124
8	33	10	5.2	9.5	27	13	31	1.4	. 00	5.3	96	146
9	31	8.9	5.7	9.9	26	12	26	1.2	. 00	4.3	89	207
10	26	7.7	5.9	11	25	12	23	. 74	. 00	3.4	77	271
11	22	7.2	5.7	13	23	11	20	. 57	. 00	3.0	65	251
12	20	6.7	5.8	13	22	11	17	. 30	. 00	3.0	57	270
13	18	6.2	6.4	12	21	10	16	. 21	. 00	4.8	54	280
14	16	6.1	8.9	11	24	9.8	15	. 10	. 00	5.9	54	261
15	15	5.3	9.5	9.6	32	9.3	17	. 05	. 00	9.0	50	216
16	15	5.1	10	9.1	33	8.9	18	. 03	. 00	16	38	174
17	17	4.5	9.2	9.1	30	9.3	18	. 02	. 00	227	29	137
18	19	4.7	8.9	9.4	28	9.0	16	. 02	. 00	202	23	169
19	18	4.7	9.4	9.8	26	9.2	14	. 01	. 00	127	19	213
20	16	4.8	11	10	25	9.5	12	. 00	. 00	82	16	243
21	16	5.0	12	9.7	23	8.7	11	. 00	. 00	61	14	222
22	17	6.3	12	9.6	21	8.3	9.5	. 00	5.4	48	14	182
23	17	8.4	12	9.4	20	7.5	8.3	. 10	13	43	15	153
24	16	9.2	11	24	19	6.8	7.4	1.1	21	37	16	138
25	14	9.4	10	46	19	6.1	6.7	1.2	21	33	14	189
26	13	10	9.6	49	18	5.8	5.8	. 86	20	94	12	213
27	11	9.8	9.1	44	17	6.9	6.0	. 36	25	110	10	159
28	10	9.3	8.7	38	17	7.8	5.4	. 07	28	83	10	120
29	9.5	8.6	8.5	34	17	8.6	5.2	. 01	33	73	15	100
30	8.7	7.4	8.6	33	---	19	4.7	. 00	35	88	15	89
31	8.0	---	8.9	40	---	97	---	. 00	---	101	15	---
MEAN	24.7	9.46	8.07	17.3	26.5	13.7	28.4	. 90	6.71	50.3	55.0	159
MAX	106	23	12	49	44	97	149	4.1	35	227	169	280
MIN	8.0	4.5	5.1	8.6	17	5.8	4.7	. 00	. 00	3.0	10	14
IN.	. 05	. 02	. 02	. 03	. 05	. 03	. 06	. 00	. 01	. 10	. 11	. 31

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1932-2000, BY WATER YEAR (WY)

MEAN	532	191	254	371	615	654	437	183	260	329	612	708
MAX	3043	1788	1801	1607	4161	3303	1927	1716	3646	1459	2137	4033
(WY)	1993	1948	1954	1970	1998	1959	1973	1959	1934	1946	1978	1964
MIN	4.00	2.98	4.00	5.12	5.44	13.7	6.41	. 90	3.58	9.05	9.86	10.3
(WY)	1932	1932	1932	1932	1932	2000	1935	2000	1935	1981	1954	1990

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

37.8		
338	Feb	8
1.5	Jun	4
1.9	May	30
.89		
83		
17		
4.4		

FOR 2000 WATER YEAR

33.2	
280	Sep 13
.00	May 20
.00	May 30
300	Jul 17
11.66	Jul 17
.00	May 19
.79	
99	
13	
.27	

WATER YEARS 1932 - 2000

428			
1163		1948	
33.2		2000	
19000		Sep 13	1964
.00	May 20	2000	
.00	May 30 2000		
20000	Sep 13	1964	
28.40	Sep 13	1964	
.00	May 19	2000	
10.11			
1120			
139			
17			

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.69	7.52	7.47	7.57	8.45	7.78	10.20	7.29	6.80	7.99	9.13	7.67
2	9.07	7.89	7.44	7.58	8.42	7.77	9.84	7.26	6.76	7.82	9.31	7.95
3	8.62	8.00	7.43	7.58	8.33	7.75	9.30	7.22	6.72	7.69	9.73	8.09
4	8.40	7.95	7.44	7.57	8.25	7.74	8.78	7.19	6.69	7.60	10.19	8.32
5	8.33	7.82	7.44	7.57	8.18	7.73	8.49	7.17	6.65	7.51	10.30	8.52
6	8.34	7.72	7.44	7.56	8.12	7.71	8.33	---	6.62	7.43	9.90	8.68
7	8.31	7.66	7.44	7.57	8.08	7.68	8.21	---	6.58	7.38	9.47	9.69
8	8.28	7.60	7.43	7.59	8.04	7.66	8.11	7.08	6.55	7.33	9.27	10.00
9	8.22	7.57	7.46	7.60	8.01	7.64	8.01	7.06	6.51	7.28	9.14	10.73
10	8.08	7.53	7.46	7.63	7.98	7.62	7.93	7.04	6.47	7.23	8.94	11.39
11	7.96	7.51	7.45	7.68	7.95	7.60	7.86	7.03	6.44	7.20	8.70	11.20
12	7.87	7.49	7.46	7.69	7.93	7.61	7.80	7.01	6.42	7.20	8.53	11.38
13	7.81	7.47	7.48	7.66	7.90	7.58	7.75	7.00	6.41	7.31	8.47	11.48
14	7.75	7.47	7.57	7.62	7.96	7.55	7.72	6.98	6.38	7.36	8.46	11.30
15	7.72	7.44	7.58	7.59	8.14	7.54	7.78	6.96	6.36	7.49	8.39	10.84
16	7.73	7.43	7.60	7.57	8.15	7.52	7.82	6.95	6.34	7.68	8.21	10.35
17	7.78	7.41	7.58	7.57	8.10	7.54	7.81	6.94	6.31	10.86	8.04	9.88
18	7.83	7.41	7.57	7.58	8.05	7.53	7.76	6.93	6.29	10.67	7.90	10.30
19	7.80	7.41	7.58	7.59	8.02	7.53	7.69	6.91	6.26	9.73	7.80	10.80
20	7.75	7.41	7.62	7.61	7.98	7.54	7.64	6.88	6.25	9.02	7.73	11.12
21	7.75	7.42	7.65	7.59	7.94	7.51	7.59	6.84	6.32	8.60	7.67	10.90
22	7.77	7.48	7.66	7.59	7.90	7.50	7.55	6.83	7.06	8.36	7.66	10.45
23	7.78	7.55	7.66	7.58	7.87	7.47	7.50	6.94	7.63	8.28	7.71	10.10
24	7.75	7.58	7.64	7.98	7.85	7.43	7.46	7.06	7.86	8.18	7.71	9.89
25	7.70	7.59	7.61	8.52	7.84	7.40	7.43	7.06	7.86	8.10	7.65	10.53
26	7.66	7.60	7.59	8.57	7.81	7.39	7.39	7.05	7.82	9.20	7.59	10.80
27	7.63	7.59	7.57	8.44	7.79	7.44	7.39	7.02	7.95	9.50	7.54	10.17
28	7.59	7.58	7.56	8.30	7.80	7.48	7.36	6.97	8.01	9.05	7.53	9.64
29	7.56	7.56	7.56	8.20	7.78	7.51	7.35	6.92	8.11	8.85	7.69	9.33
30	7.54	7.52	7.56	8.15	--	7.78	7.33	6.88	8.14	9.11	7.70	9.16
31	7.51	---	7.57	8.34	---	9.46	---	6.83	---	9.35	7.69	---
TOTAL	247.58	227.18	233.57	241.24	232.62	236.99	239.18	---	206.57	256.36	261.75	300.66
MEAN	7.99	7.57	7.53	7.78	8.02	7.64	7.97	---	6.89	8.27	8.44	10.02
MAX	9.69	8.00	7.66	8.57	8.45	9.46	10.20	---	8.14	10.86	10.30	11.48
MIN	7.51	7.41	7.43	7.56	7.78	7.39	7.33	---	6.25	7.20	7.53	7.67

02321975 SANTA FE RIVER AT US HWY 441 NEAR HIGH SPRINGS, FL
LOCATION.--Lat $29^{\circ} 51^{\prime} 09^{\prime \prime}$, long $82^{\circ} 36^{\prime} 31^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{sec} .27$, T. 7 S., R. 17 E., Columbia County, Hydrologic Unit 03110206, at highway bridge on U.S. 441 , 1.9 mi northwest of the intersection of U.S. 441 and U.S. 27 , and 28.1 mi upstream from mouth.

DRAINAGE AREA.--859 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1992 to current year.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (Florida Department of Transportation bench mark).

REMARKS.--Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	265	235	175	135	123	152	138	96	66	56	102	e98
2	266	219	177	141	123	153	149	96	66	55	164	e99
3	263	207	175	143	125	151	154	94	67	55	e170	e100
4	264	208	173	140	123	150	156	93	66	54	e175	101
5	263	214	174	137	119	146	149	91	64	54	e180	e105
6	257	216	170	136	119	144	150	90	63	52	119	e110
7	258	218	167	134	120	144	150	90	61	51	112	e115
8	256	213	167	134	120	145	149	89	61	48	e111	e120
9	254	208	169	132	120	143	139	87	60	48	e112	e125
10	253	209	169	127	117	142	141	85	59	47	e111	e135
11	250	206	166	122	116	141	140	84	59	46	112	145
12	249	204	164	128	113	137	137	85	58	45	e111	e175
13	247	201	165	122	112	135	134	84	58	46	110	e200
14	245	202	156	122	114	135	131	83	57	45	e111	e230
15	244	204	153	128	112	135	126	82	54	45	e110	e260
16	245	197	151	128	117	135	123	80	53	44	e111	e290
17	243	188	152	128	120	133	121	77	53	44	e110	e320
18	230	187	153	124	125	131	119	75	54	53	e111	e300
19	216	192	146	116	128	134	114	76	54	82	112	e305
20	220	198	146	123	129	133	111	76	54	102	e110	e310
21	222	198	147	116	132	130	112	74	55	102	e108	e315
22	228	193	137	117	134	129	109	75	55	99	e106	e310
23	225	193	139	119	138	128	103	77	54	97	e104	e285
24	219	198	144	123	141	128	105	74	54	95	e102	e260
25	219	206	142	117	143	128	102	73	54	94	e100	e240
26	224	202	145	117	145	130	99	70	53	92	e98	e245
27	226	192	145	119	149	133	100	69	54	95	e97	e250
28	224	188	141	122	150	127	100	70	55	101	96	e200
29	226	184	135	125	152	128	98	70	55	101	e95	153
30	224	176	135	126	---	129	95	66	56	99	e96	e150
31	225	---	132	124	---	128	---	66	---	99	e97	---
MEAN	240	202	155	127	127	137	125	80.5	57.7	69.2	115	202
MAX	266	235	177	143	152	153	156	96	67	102	180	320
MIN	216	176	132	116	112	127	95	66	53	44	95	98
IN.	. 32	. 26	. 21	. 17	. 16	. 18	. 16	. 11	. 08	. 09	. 15	. 26

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993-2000, BY WATER YEAR (WY)

MEAN	1210	481	481	621	1077	1005	660	463	377	443	532	453
MAX	3505	1006	934	1075	4110	3531	1226	1172	852	745	877	
(WY)	1993	1993	1998	1998	1998	1998	1993	1997	1997	1996	1997	1995
MIN	146	202	155	127	127	137	125	80.5	57.7	69.2	115	202
(WY)	1994	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1993 - 2000

[^3]LOCATION.--Lat $29^{\circ} 50^{\prime} 55^{\prime \prime}$, long $82^{\circ} 42^{\prime} 55^{\prime \prime}$, in $\mathrm{SE}^{1} / 4$ sec. 28 , T. 7 S., R. 16 E., Gilchrist County, Hydrologic Unit 03110206 , on left bank 2.1 mi upstream from bridge on State Highway 47, 5.1 mi south of Fort White, and 18 mi upstream from mouth.
DRAINAGE AREA.--1,017 mi^{2}.
PERIOD OF RECORD.--October 1927 to January 1930, June 1932 to current year.
REVISED RECORDS.--WDR FL-75-1: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 20.86 ft above National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to June 3, 1932, nonrecording gage at several sites within 200 ft of present site at various datums. Oct. 1, 1947 to Feb. 10, 1949, auxiliary nonrecording gage and since Feb. 11,1949 , auxiliary water-stage recorder at bridge on U.S. Highway 129,16 mi downstream from base gage at datum 3.5 ft above National Geodetic Vertical Datum of 1929.
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	923	785	717	704	741	657	677	616	638	640	759	743
2	938	784	725	700	734	657	675	622	637	636	769	781
3	938	767	725	700	734	657	688	624	636	634	770	774
4	946	762	722	701	734	657	702	624	636	629	768	770
5	946	755	716	700	726	657	692	624	633	625	771	768
6	947	751	720	700	725	657	688	626	631	621	838	775
7	941	751	725	700	725	657	687	632	628	616	827	776
8	929	756	725	702	720	657	681	632	622	614	810	788
9	917	756	725	708	714	657	669	632	622	606	807	819
10	908	751	717	700	714	655	666	632	620	601	805	854
11	907	751	722	700	708	654	666	638	622	596	797	895
12	896	751	725	700	700	656	659	632	626	597	816	929
13	889	753	722	705	700	663	654	632	624	599	820	961
14	882	747	721	708	705	661	657	635	624	595	793	989
15	880	742	716	706	695	660	657	634	625	594	781	1030
16	887	742	722	700	691	659	647	640	624	610	780	1040
17	883	740	717	700	691	663	640	637	628	628	772	1080
18	870	742	717	700	684	660	640	635	622	609	767	1110
19	857	742	717	700	683	659	640	633	622	616	764	1080
20	857	742	710	692	683	666	632	639	623	642	759	1080
21	861	741	716	695	677	664	632	641	626	663	755	1090
22	854	745	716	721	674	663	632	646	633	686	750	1100
23	836	738	712	752	674	664	630	652	635	684	747	1100
24	820	734	708	766	671	663	624	650	636	696	746	1090
25	814	734	712	760	666	679	621	658	635	708	752	1070
26	815	730	715	754	666	737	620	656	632	726	750	1070
27	814	725	708	750	665	695	618	654	632	722	740	1060
28	806	725	708	750	657	688	626	650	639	758	737	1070
29	802	725	708	747	657	683	628	651	645	781	734	1060
30	806	721	707	744	---	683	626	647	645	758	734	1050
31	793	---	708	742	---	683	---	643	---	758	742	---
MEAN	876	746	717	716	697	667	652	638	630	653	773	960
MAX	947	785	725	766	741	737	702	658	645	781	838	1110
MIN	793	721	707	692	657	654	618	616	620	594	734	743
IN.	. 99	. 82	. 81	. 81	. 74	. 76	. 72	. 72	. 69	. 74	. 88	1.05

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1928-2000, BY WATER YEAR (WY)

MEAN	1804	1401	1292	1414	1613	1825	1733	1417	1326	1397	1689
MAX	4357	3840	2778	3415	4810	5345	4668	3409	4063	2728	3545
(WY)	1993	1948	1965	1942	1998	1948	1948	1959	1959	1972	1928
MIN	730	691	641	678	691	667	652	636	630	653	773
(WY)	1956	1991	1991	1956	1956	2000	2000	1957	2000	2000	2000

SUMMARY STATISTICS

ANNUAL MEAN	855		
HIGHEST ANNUAL MEAN			
LOWEST ANNUAL MEAN			
HIGHEST DAILY MEAN	7140	Feb 10	
LOWEST DAILY MEAN	707	Dec 30	
ANNUAL SEVEN-DAY MINIMUM		Dec 24	
INSTANTANEOUS PEAK FLOW			
INSTANTANEOUS PEAK STAGE			
INSTANTANEOUS LOW FLOW			
ANNUAL RUNOFF (INCHES)	11.42		
10 PERCENT EXCEEDS	996		
50 PERCENT EXCEEDS	834		
90 PERCENT EXCEEDS	725		

FOR 2000 WATER YEAR

727	1569			
	3112			$\begin{aligned} & 1948 \\ & 1956 \end{aligned}$
		724		
1110	Sep 18	16900	Sep 16	1964
594	Jul 15	594	Jul 15	2000
598	Jul 9	598	Jul 9	2000
1160	Sep 17	17000	Sep 16	1964
1.21	Oct 3	15.34	Sep 16	1964
584	Jul 11	584	Jul 11	2000
9.73		20.96		
881		2590		
708		1290		

SUWANNEE RIVER BASIN
 02323500 SUWANNEE RIVER NEAR WILCOX, FL

LOCATION.--Lat $29^{\circ} 35^{\prime} 22^{\prime \prime}$, long $82^{\circ} 56^{\prime} 12^{\prime \prime}$, in NW $1 / 4$ sec. 29 , T. 10 S., R. 14 E., Levy County, Hydrologic Unit 03110205 , on left bank about 400 ft downstream from Fort Fannin Bridge on U.S. Highway 19, 2.0 mi southwest of Wilcox and 33 mi upstream from mouth.
DRAINAGE AREA.--9,640 mi^{2}, approximately, includes part of watershed in Okefenokee Swamp which is indeterminate.
PERIOD OF RECORD.--October 1930 to September 1931, October 1941 to current year. Monthly discharge only for some periods, published in WSP 1304.
REVISED RECORDS.--WSP 1905: WDR FL-75-1: Drainage area. WDR FL-97-4: 1996
GAGE.--Water-stage recorder. Datum of gage is 0.53 ft below National Geodetic Vertical Datum of 1929 . Prior to July 4, 1931, nonrecording gage at site 400 ft upstream at present datum. July 4 to Sept. 30, 1931, and Mar. 26 to May 14, 1942, water-stage recorder, and May 15, 1942 to Jan. 24, 1951, nonrecording gage at present site and datum. Since Feb. 1, 1951, auxiliary water-stage recorder about 9.0 mi downstream from base gage. Datum of auxiliary gage is 2.99 ft below National Geodetic Vertical Datum of 1929. Index velocity meter since Dec. 9, 1999.
REMARKS.--Records poor. Flow generally affected by tide when discharge is less than $17,500 \mathrm{ft}^{3} / \mathrm{s}$.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3890	3220	2820	2940	e3320	3600	4550	4410	2480	2870	2480	2220
2	3700	3730	2910	2950	3270	3440	4180	4300	2460	2730	2450	2540
3	3770	3630	3210	2810	3220	3490	4260	4030	2510	2660	2470	2360
4	3770	3160	3360	2720	3380	3580	5010	3920	2620	2380	2700	2460
5	3720	3290	3270	3510	3660	3840	5330	3780	2200	2470	2720	2550
6	3670	3310	3480	3060	3230	3570	4560	3760	2770	2510	2480	2560
7	3630	3450	3420	3210	3160	e3400	4770	3660	2810	2330	2830	2740
8	3480	3420	3280	2750	3190	3340	4880	e3600	2470	2690	2890	3050
9	3540	3440	e3000	2740	3630	3320	5740	e3550	2460	2260	3080	3330
10	3630	3450	2860	2740	3030	3340	4940	3530	2550	2370	2770	3840
11	3670	3470	3200	3100	2950	3360	5210	3530	2710	2360	2660	4330
12	3610	3600	3100	2930	3130	4300	5470	3350	2300	2260	2640	4880
13	3530	3330	2780	2760	3040	e3900	5430	3430	2410	2170	2880	5500
14	3600	3390	3640	3750	3090	3460	5470	3460	2360	2160	2600	5660
15	3690	3440	3240	2610	3840	3090	5440	3430	2220	2260	2780	6140
16	3570	3570	3510	2570	3300	2960	5450	3240	2310	1970	2570	6190
17	3310	3500	3300	3050	3320	3850	5370	2810	2470	2440	2490	6910
18	3480	3330	2950	2890	3090	3690	5610	2720	2480	2520	2570	6280
19	3450	3380	2960	3080	3150	3030	5310	2810	2510	2330	2710	6130
20	3400	3450	3220	3120	3760	3240	4700	2790	2370	2370	2800	5800
21	3550	3490	2990	3410	3540	3380	4540	2700	2560	2590	2700	6000
22	3440	3530	3610	2300	3560	3480	5070	2630	2370	2420	2720	6010
23	3460	3450	3510	2560	3460	3560	4300	2930	2480	2510	2610	6060
24	3500	3420	3380	3800	3560	3490	3560	2830	2540	2470	2330	6220
25	3480	3370	3430	3620	3600	3510	4650	2850	2620	2450	2380	6200
26	3440	3380	2830	3610	3630	3850	4550	2880	2500	2600	2430	6610
27	3440	3530	3150	3190	3730	3810	4450	3120	2470	2480	2270	6780
28	3460	3350	3090	3270	4140	4440	4710	2800	2270	2360	2510	6740
29	3560	3260	3280	2930	3610	4310	5330	3020	2270	2300	2440	6820
30	3350	3490	2810	3440	---	4200	5070	2830	2300	2510	2700	7070
31	3360	---	2910	e3390	---	4940	---	2500	---	2250	2260	---
TOTAL	110150	102830	98500	94810	98590	112770	147910	101200	73850	75050	80920	149980
MEAN	3553	3428	3177	3058	3400	3638	4930	3265	2462	2421	2610	4999
MAX	3890	3730	3640	3800	4140	4940	5740	4410	2810	2870	3080	7070
MIN	3310	3160	2780	2300	2950	2960	3560	2500	2200	1970	2260	2220

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931-2000, BY WATER YEAR (WY)

MEAN	8715	7630	7991	10030	12710	15520	15680	11070	8433	8193	9055
MAX	25810	33030	32630	27320	27450	40960	57260	28690	21690	17550	22190
(WY)	1965	1948	1948	1948	1998	1998	1948	1973	1959	1973	1991
MIN	3553	3428	3177	3058	3400	3638	4631	3265	2462	2421	2610
(WY)	2000	2000	2000	2000	2000	2000	1956	2000	2000	2000	2000

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1931 - 2000
ANNUAL TOTAL
ANNUAL MEAN

1700600		
4659		
10100	Feb	13
2780	Dec	13
3070	Dec	25
8140		
3630		
3360		

1246560		
3406		
7070	Sep	30
1970	Jul	16
2220	Jul	10
8500	Sep 26	
4.60	Sep	16
4880		
3310		
2440		

10330				
24560			1948	
3406			2000	
84700		Apr	14	1948
1970		Jul	16	2000
2220		Jul 10	2000	
84700	Apr	14	1948	
22.32	Apr	14	1948	
18500				
8200				
4610				

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN		JUL	AUG	SEP
1	3.14	2.92	1.80	2.38	---	2.56	2.77	3.08	2.65		2.89	2.93	3.06
2	3.09	3.38	2.12	2.36	1.75	2.66	3.06	3.27	2.82		2.72	2.90	3.08
3	3.27	2.36	2.68	2.51	2.12	2.83	3.46	3.23	2.87		2.58	2.84	2.95
4	3.27	2.19	2.87	2.68	2.52	3.09	3.70	3.16	2.84		2.64	2.68	2.87
5	3.25	2.34	3.09	2.26	2.24	2.76	2.77	3.13	2.90		2.73	2.62	2.81
6	3.13	2.44	3.16	1.78	2.03	2.79	3.08	3.04	2.81		2.68	2.61	2.74
7	2.87	2.70	2.61	2.28	2.31	---	3.30	2.95	2.38		2.68	2.69	2.58
8	3.07	2.86	2.60	2.29	2.44	2.89	3.48	---	2.28		2.58	2.47	2.42
9	3.24	3.05		2.66	2.34	3.01	3.00	---	2.25		2.40	2.40	2.50
10	3.39	3.07	2.83	2.85	2.33	3.04	2.92	2.89	2.37		2.55	2.59	2.92
11	3.35	3.03	2.80	2.51	2.63	3.07	3.12	2.74	2.44		2.58	2.85	3.16
12	3.22	2.75	2.80	2.22	2.60	2.71	3.17	2.69	2.54		2.60	2.77	3.42
13	3.17	2.48	3.05	2.33	2.49	---	3.17	2.75	2.57		2.50	2.89	3.66
14	3.04	2.71	2.78	1.83	2.96	2.11	3.15	2.83	2.63		2.72	2.86	3.95
15	2.71	2.68	2.43	1.47	2.48	2.35	3.34	2.71	2.84		2.89	2.73	4.12
16	2.40	2.62	2.10	1.83	2.47	2.95	3.55	2.48	2.89		3.11	2.67	4.29
17	2.56	2.45	1.77	2.38	2.64	2.84	3.60	2.64	2.82		3.08	2.82	4.05
18	2.63	2.56	2.10	2.59	2.71	2.61	3.66	2.88	2.82		2.76	2.86	4.03
19	2.70	2.82	2.78	2.70	2.86	2.53	3.32	2.89	2.72		2.73	2.77	3.87
20	2.87	3.13	2.62	2.96	2.68	2.95	3.32	2.86	2.60		2.80	2.71	3.74
21	2.82	3.15	2.73	2.19	2.25	2.72	3.50	2.88	2.46		2.79	2.54	3.95
22	2.81	3.03	2.75	2.47	2.05	2.56	3.16	2.94	2.37		2.82	2.35	3.84
23	3.02	2.95	2.37	2.92	2.25	2.41	2.96	2.84	2.49		2.71	2.36	3.75
24	2.79	2.96	2.08	2.90	2.49	2.43	3.33	2.79	2.55		2.69	2.41	3.83
25	2.78	3.08	1.91	1.95	2.57	2.81	3.43	2.72	2.51		2.65	2.70	3.94
26	2.90	3.23	1.89	1.79	2.58	2.91	2.73	2.62	2.55		2.60	2.76	4.08
27	2.99	2.83	2.19	1.61	2.60	3.32	2.78	2.53	2.64		2.60	2.92	3.81
28	2.90	2.56	2.41	1.64	2.40	3.30	3.28	2.60	2.77		2.74	2.96	3.71
29	2.68	2.53	2.18	1.84	2.35	2.94	3.30	2.73	3.01		2.82	2.95	3.64
30	2.82	2.24	2.09	2.20	---	3.27	3.03	2.54	3.13		2.92	2.84	3.67
31	2.82	---	2.32	---	-	3.00	---	2.45	--		3.03	2.89	---
TOTAL	91.70	83.10	---			96.44	---	79.52	84.59	84.34			
MEAN	2.96	2.77	---			3.21	---	2.65	2.73	2.72			
MAX	3.39	3.38	-			3.70	---	3.13	3.11	2.96			
MIN	2.40	2.19	---			2.73	---	2.25	2.40	2.35			

LOCATION.--Lat $29^{\circ} 47^{\prime} 11^{\prime \prime}$, long $83^{\circ} 19^{\prime} 18^{\prime \prime}$, in $\mathrm{NE} /{ }^{1} / 4$ sec. 16 , T. 8 S., R. 10 E., Taylor County, Hydrologic Unit 03110102 , on right bank 0.7 mid downstream from Atlantic Coast Line Railroad bridge, 0.7 mi south of Clara, 13 mi upstream from mouth, and 16 mi northwest of Cross City.
DRAINAGE AREA.--350 mi^{2}, approximately. See REMARKS.
PERIOD OF RECORD.--February 1950 to current year.
REVISED RECORDS.--WSP 1234: 1950. WSP 1724: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 7.84 ft above National Geodetic Vertical Datum of 1929.
REMARKS.--No estimated daily discharges. Records good. Below about $500 \mathrm{ft}^{3} / \mathrm{s}$, all flow enters sinkhole 0.5 mi downstream from gage. Above about $4,000 \mathrm{ft}^{3} / \mathrm{s}$, discharge measurements are made along U.S. Highways 19,98 , and Alternate 27, measurements include all flow from about 3 mi northwest to 5 mi southwest of main channel, drainage area is increased by about $30 \mathrm{mi}^{2}$.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	97	6.7	5.0	8.1	29	25	17	6.2	3.2	3.7	2.7	2.6
2	93	7.3	5.0	8.1	28	23	15	6.2	2.9	3.3	3.7	3.9
3	87	7.4	5.0	8.1	25	21	13	6.2	2.6	3.3	7.6	7.4
4	83	7.1	5.0	8.1	22	19	12	6.2	2.6	3.0	6.8	19
5	80	7.5	4.9	7.7	20	18	11	6.1	2.4	2.9	6.1	38
6	75	8.3	4.8	7.1	18	17	10	5.4	2.1	2.7	5.4	162
7	67	8.4	5.0	7.1	16	16	9.7	5.4	2.1	2.6	5.7	288
8	58	8.2	5.0	7.1	15	14	9.1	5.2	1.8	2.4	5.3	358
9	51	8.1	5.0	7.0	15	13	8.6	5.1	1.6	2.3	4.9	330
10	46	7.6	4.9	7.5	14	13	8.1	5.1	1.6	2.1	12	267
11	42	7.4	4.8	8.5	13	12	7.6	5.2	1.6	1.9	18	212
12	39	7.0	5.0	8.2	13	13	7.4	4.9	1.6	2.4	17	173
13	35	6.6	5.6	7.7	12	13	7.1	4.8	1.5	2.4	14	138
14	30	6.2	7.2	7.4	31	11	7.1	4.6	1.8	2.6	9.3	112
15	26	5.9	7.1	7.1	58	11	7.1	4.4	3.1	2.8	6.0	93
16	23	5.6	7.1	6.6	61	11	7.1	4.3	3.7	2.4	4.2	78
17	20	5.4	7.4	6.6	55	13	7.2	4.0	1.7	2.4	3.3	139
18	19	5.4	7.6	6.2	47	15	7.1	3.7	1.6	2.5	2.7	979
19	17	5.1	7.6	6.2	41	15	7.0	3.7	1.9	2.5	2.3	1300
20	16	5.0	7.5	6.2	38	18	6.4	3.7	1.9	2.8	2.2	1360
21	15	4.9	7.5	6.1	32	18	6.2	3.6	2.4	3.0	3.1	1230
22	14	5.2	9.1	5.8	28	17	6.2	3.4	2.9	2.7	5.5	1100
23	14	5.6	9.7	6.6	25	14	6.2	3.8	2.5	2.4	6.6	982
24	12	5.8	9.4	22	23	13	6.2	3.7	2.3	2.9	5.7	832
25	10	5.8	9.6	32	22	12	6.2	3.5	2.5	2.8	4.5	686
26	9.9	5.6	9.1	36	20	11	6.2	3.5	2.7	2.6	3.5	550
27	9.3	5.4	8.9	32	19	12	6.2	3.4	3.0	4.6	3.0	444
28	8.7	5.4	8.6	25	24	14	6.2	3.4	2.5	5.9	2.8	367
29	8.1	5.4	8.5	22	25	13	6.2	3.5	3.1	5.2	2.8	308
30	7.6	5.0	8.1	22	---	15	6.0	3.5	4.0	4.3	2.6	262
31	7.1	---	8.1	28	---	18	---	3.2	---	3.4	2.6	---
MEAN	36.1	6.34	6.87	12.4	27.2	15.1	8.21	4.48	2.37	2.99	5.87	427
MAX	97	8.4	9.7	36	61	25	17	6.2	4.0	5.9	18	1360
MIN	7.1	4.9	4.8	5.8	12	11	6.0	3.2	1.5	1.9	2.2	2.6
IN.	. 12	. 02	. 02	. 04	. 08	. 05	. 03	. 01	. 01	. 01	. 02	1.36

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1950-2000, BY WATER YEAR (WY)

MEAN	290	125	191	334	477	495	340	125	118	306	495	
MAX	1436	1291	998	1186	2266	2022	1443	972	925	1305	2496	
(WY)	1958	1952	1954	1998	1998	1991	1982	1978	1957	1964	1970	
MIN	16.0	6.34	6.87	12.4	13.0	15.1	8.21	4.48	2.37	2.99	4.75	
(WY)	1956	2000	2000	2000	1957	2000	2000	2000	2000	2000	1998	1956

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

59.1		
484	Jul	2
4.8	Dec	6
4.9	Dec	5
2.29		
166		
26		
6.9		

FOR 2000 WATER YEAR

45.7		
1360	Sep 20	
1.5	Jun	13
1.6	Jun	8
1390	Sep	20
10.42	Sep	20
1.4	Jun	11
1.78		
52		
7.1		
2.6		

WATER YEARS 1950 - 2000

316			
901		1964	
35.4		1956	
16400	Sep 14	1964	
1.5	Jun 13	2000	
1.6	Jun	8	2000
17600	Sep 13	1964	
18.90	Sep 13	1964	
1.4	Jun 11	2000	
12.25			
854			
116			
14			

LOCATION.--Lat $30^{\circ} 05^{\prime} 53^{\prime \prime}$, long $83^{\circ} 28^{\prime} 19^{\prime \prime}$, in $\mathrm{NE}^{1} / 4 \mathrm{sec} .36$, T. 4 S., R. 8 E., Taylor County, Hydrologic Unit 03110102 , near left bank at downstream side of bridge on U.S. Highway 27, 1.8 mi upstream from small tributary, 4 mi northeast of Foley, and 32 mi upstream from mouth.
DRAINAGE AREA.--60 mi^{2} approximately.
PERIOD OF RECORD.--February to August 1955 (discharge measurements only); September 1955 to current year.
REVISED RECORDS.--WSP 1905: Drainage area: WDR FL-92-4: 1991.
GAGE.--Water-stage recorder. Datum of gage is 53.59 ft above National Geodetic Vertical Datum of 1929 (Florida Department of Transportation bench mark). REMARKS.--No estimated daily discharges. Records good.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	1.2	1.0	1.0	3.3	1.9	1.1	. 35	. 23	. 56	. 32	. 47
2	17	2.1	1.1	. 97	3.1	1.8	. 97	. 35	. 23	. 51	. 66	. 86
3	14	2.6	1.1	. 91	2.7	1.7	. 84	. 36	. 23	. 47	1.1	. 97
4	13	2.2	1.2	. 88	2.4	1.6	. 88	. 36	. 23	. 43	1.6	1.5
5	13	2.0	1.2	. 81	2.1	1.6	. 83	. 35	. 23	. 38	1.8	2.0
6	12	1.8	1.2	. 76	1.8	1.6	. 74	. 34	. 24	. 39	1.8	14
7	12	1.5	1.2	. 76	1.7	1.3	. 67	. 32	. 24	. 37	1.6	25
8	11	1.4	1.1	. 75	1.6	1.2	. 60	. 32	. 23	. 34	1.2	21
9	10	1.3	1.2	. 75	1.4	1.2	. 54	. 31	. 23	. 34	. 79	19
10	9.7	1.2	1.2	. 82	1.4	. 98	. 50	. 31	. 23	. 33	. 63	18
11	8.7	1.0	1.2	. 78	1.3	. 86	. 43	. 30	. 22	. 31	. 53	15
12	7.6	. 97	1.2	. 68	1.2	. 82	. 45	. 30	. 21	. 31	. 40	12
13	6.4	. 95	1.3	. 66	1.2	. 81	. 40	. 29	. 21	. 47	. 37	9.7
14	5.5	. 89	1.5	. 64	1.7	. 78	. 40	. 28	. 22	. 39	. 33	7.7
15	4.7	. 90	1.3	. 58	7.0	. 71	. 40	. 27	. 21	. 34	. 30	5.9
16	4.3	. 80	1.3	. 55	7.4	. 76	. 40	. 26	. 20	. 29	. 28	4.4
17	3.8	. 80	1.3	. 55	6.5	. 92	. 38	. 26	. 23	. 29	. 27	12
18	3.3	. 79	1.2	. 55	5.7	1.0	. 36	. 25	. 36	. 30	. 28	72
19	3.0	. 72	1.2	. 61	4.9	1.1	. 36	. 25	. 27	. 29	. 29	92
20	2.7	. 73	1.2	. 60	4.2	1.4	. 36	. 24	. 41	. 28	. 79	121
21	2.5	. 77	1.3	. 54	3.6	1.5	. 35	. 24	. 39	. 28	1.6	108
22	2.3	1.3	1.4	. 54	3.0	1.5	. 34	. 30	. 39	. 28	1.7	93
23	2.2	1.1	1.4	. 66	2.7	1.2	. 35	. 70	. 43	. 30	1.6	86
24	1.9	1.2	1.4	2.4	2.4	1.0	. 35	. 33	. 44	. 33	1.2	78
25	1.7	1.2	1.3	5.7	2.3	. 88	. 36	. 29	. 41	. 35	. 89	68
26	1.6	1.3	1.2	3.8	2.0	. 80	. 35	. 28	. 38	. 36	. 73	58
27	1.5	1.2	1.2	3.0	1.9	. 91	. 36	. 28	. 50	. 36	. 57	49
28	1.4	1.3	1.2	2.6	2.0	1.2	. 34	. 28	. 58	. 34	. 44	43
29	1.3	1.2	1.1	2.4	2.0	1.0	. 34	. 27	. 59	. 41	. 38	37
30	1.2	. 97	1.1	2.4	---	1.1	. 35	. 25	. 62	. 37	. 33	33
31	1.0	---	1.0	3.1	---	1.2	---	. 23	---	. 35	. 34	---
MEAN	6.46	1.25	1.22	1.35	2.91	1.17	. 50	. 31	. 32	. 36	. 81	36.9
MAX	20	2.6	1.5	5.7	7.4	1.9	1.1	. 70	. 62	. 56	1.8	121
MIN	1.0	. 72	1.0	. 54	1.2	. 71	. 34	. 23	. 20	. 28	. 27	. 47
IN.	. 12	. 02	. 02	. 03	. 05	. 02	. 01	. 01	. 01	. 01	. 02	. 69

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1956-2000, BY WATER YEAR (WY)

MEAN	38.5	13.1	26.1	47.0	73.7	87.4	70.7	25.5	31.1	47.6	79.3	59.4
MAX	389	81.5	185	179	259	377	413	147	478	194	580	560
(WY)	1958	1977	1977	1987	1998	1991	1973	1964	1957	1964	1970	1964
MIN	.53	.70	.88	.95	.92	1.17	.50	.31	.32	.36	.50	.64
(WY)	1994	1969	1996	1996	1996	2000	2000	2000	2000	2000	1993	1993

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

5.77		
60	Jul 10	
.49	May 31	
.50	May 29	
13		
13.31		
2.80		

FOR 2000 WATER YEAR

4.42		
		Sep 20
.20	Jun 16	
.21	Jun 10	
5.59	Sep 20	
.20	Sep 20	
1.00		
7.1		
.96		
.28		

WATER YEARS 1956 - 2000

49.9			
154			1964
4.42		2000	
2710		Sep 12	1964
.20	Jun 16 2000		
.21	Jun 10 2000		
3210	Sep 12 1964		
15.21	Sep 12 1964		
.20	Jun 11 2000		
11.29			
137			
15			
1.3			

02325000 FENHOLLOWAY RIVER NEAR PERRY, FL

LOCATION.--Lat $30^{\circ} 04^{\prime} 16^{\prime \prime}$, long $83^{\circ} 39^{\prime} 45^{\prime \prime}$, in $\mathrm{SE} 1 / 4 \mathrm{sec} .6$, T. 5 S., R. 7 E., Taylor County, Hydrologic Unit 03110102, near right bank on downstream side of old bridge at State Highway $356,1.0 \mathrm{mi}$ southwest of the community of Hampton Springs, 5.5 mi southwest of Perry and 14 mi upstream from mouth.
DRAINAGE AREA.-- $160 \mathrm{mi}^{2}$, approximately.
PERIOD OF RECORD.--August 1946 to June 1952 (discharge measurements only); August 1952 to October 1954 (gage heights and discharge measurements only); November 1964 to July 1977 (crest-stage and periodic discharge measurements only); August 1977 to September 1984. May 1986 to current year.
REVISED RECORDS.--WSP 1905: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. August 13, 1946 to October 1954, nonrecording gage at same site at datum 5.00 ft higher. November 1964 to July 1977, crest-stage gage at same site and datum.
REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by large ground-water withdrawals by cellulose plant about 10 mi upstream. Flow affected by backwater from Spring Creek at times.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	116	97	93	82	88	86	82	78	113	98	81	81
2	114	111	94	81	81	85	84	77	110	94	92	92
3	113	101	92	80	72	79	85	77	108	91	86	87
4	115	100	93	79	89	80	87	77	105	88	89	89
5	114	97	92	75	91	79	82	75	102	84	92	96
6	103	98	92	75	89	79	82	75	104	82	89	117
7	101	101	91	74	88	78	84	75	99	81	90	129
8	109	101	90	73	89	72	86	76	94	82	87	125
9	108	101	83	75	90	69	85	76	94	84	86	124
10	108	101	87	78	90	74	84	73	91	83	88	125
11	106	97	83	78	91	80	84	76	91	80	88	122
12	107	99	86	72	92	81	85	77	95	81	87	121
13	93	96	91	74	93	72	84	77	90	77	86	119
14	90	98	99	76	96	77	84	77	86	84	85	117
15	101	98	95	75	99	78	83	79	74	87	82	115
16	104	97	91	76	94	79	82	77	84	86	81	114
17	104	95	87	71	92	84	82	78	86	89	81	128
18	106	94	84	79	93	81	81	81	88	92	80	189
19	104	95	89	77	91	80	79	80	85	93	78	165
20	102	96	87	77	92	87	81	79	84	89	81	150
21	102	98	88	75	90	82	81	80	88	87	81	146
22	101	97	91	75	88	82	79	89	90	87	84	151
23	100	96	89	77	89	81	79	149	87	84	82	160
24	98	96	87	99	89	76	80	125	96	92	80	150
25	100	97	86	98	89	80	82	111	91	95	80	147
26	100	98	86	87	88	81	80	122	93	83	79	146
27	98	97	84	87	90	87	77	125	92	83	77	141
28	96	95	86	88	93	86	75	123	111	84	77	130
29	97	94	82	87	88	83	78	121	101	82	77	133
30	96	93	81	88	---	80	76	117	100	80	76	133
31	94	---	81	92	---	83	---	114	---	81	72	---
MEAN	103	97.8	88.4	80.0	89.8	80.0	81.8	90.8	94.4	85.9	83.0	128
MAX	116	111	99	99	99	87	87	149	113	98	92	189
MIN	90	93	81	71	72	69	75	73	74	77	72	81

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1977-2000, BY WATER YEAR (WY)

MEAN	175	142	151	190	240	276	256	159	142	188	228
MAX	451	266	369	476	495	699	652	316	317	475	492
(WY)	1995	1981	1987	1987	1987	1991	1983	1983	1983	1984	1991
MIN	75.7	86.7	84.7	80.0	82.5	80.0	81.8	90.8	94.4	85.9	82.8
(WY)	1991	1991	1991	2000	1996	2000	2000	2000	2000	2000	1998

SUMMARY STATISTICS

```
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
LONEST ANNUAL MEAN
```

FOR 1999 CALENDAR YEAR

116		
197	Jul	11
81	Dec	30
84	Dec	25
143		
114		
93		

FOR 2000 WATER YEAR

91.9		
189	Sep	18
69	Mar	9
75	Jan	11
199	Sep	18
13.89	Sep	18
65	Mar	9
114		
88		
77		

194			
317			1983
91.9			2000
1130	Jul	31	1982
35	Oct	8	1990
48	Oct	4	1990
1360	Sep	18	1964
24.39	Sep	13	1964
35	Oct	8	1990
349			
148			
99			

LOCATION.--Lat $30^{\circ} 10^{\prime} 14^{\prime \prime}$, long $83^{\circ} 49^{\prime} 26^{\prime \prime}$, in $\mathrm{NE} / \frac{1}{4} \sec .4$, T. 4 S., R. 5 E., Taylor County, Hydrologic Unit 03110102, on downstream side of concrete bridge, 3.0 mi downstream from Natural Well Branch, 14 mi upstream from mouth, and 14.7 mi northwest of Perry.

DRAINAGE AREA.--198 mi ${ }^{2}$.
PERIOD OF RECORD.--February 1950 to current year.
REVISED RECORDS.--WSP 1905: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 14.35 ft above National Geodetic Vertical Datum of 1929.
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	45	24	25	25	27	32	32	15	12	6.9	18	7.0
2	40	42	25	25	27	31	33	14	11	6.5	18	9.1
3	37	49	25	24	27	29	33	14	11	6.2	18	10
4	35	56	25	24	26	28	33	14	11	5.6	20	11
5	34	52	25	24	25	27	31	13	11	5.1	20	12
6	33	47	25	24	25	26	32	13	11	4.7	21	20
7	31	43	24	24	24	25	32	13	10	4.3	21	29
8	30	41	24	23	24	24	32	13	10	4.2	20	34
9	29	38	24	23	23	24	32	12	9.9	4.0	19	35
10	29	37	24	24	23	23	31	12	9.7	3.7	18	34
11	28	36	24	24	23	23	30	12	9.6	3.4	18	31
12	27	34	23	24	23	23	29	12	9.6	3.6	17	30
13	27	33	24	24	22	23	28	12	9.4	4.5	17	29
14	26	32	25	23	23	23	27	11	9.4	4.5	16	27
15	25	31	25	23	24	22	27	11	9.4	5.4	15	26
16	25	30	25	23	25	23	26	11	9.2	7.1	14	25
17	24	30	24	23	26	23	25	10	8.8	7.5	14	26
18	23	29	24	23	26	23	24	10	9.0	7.2	13	38
19	23	28	25	23	25	24	23	10	9.2	7.4	12	46
20	23	28	25	23	25	27	23	9.7	8.7	8.5	12	50
21	23	28	26	23	24	30	22	9.5	8.5	8.9	12	52
22	22	27	26	23	24	32	21	11	8.1	9.4	11	52
23	22	27	27	23	23	33	20	14	8.0	11	11	57
24	21	27	27	25	23	31	19	12	8.5	13	10	57
25	21	27	27	29	23	30	19	13	8.8	14	9.6	59
26	21	27	27	31	22	30	18	13	8.6	16	9.5	58
27	20	27	27	32	22	30	17	13	8.3	20	8.8	58
28	20	26	26	30	23	30	17	13	8.2	22	8.3	55
29	20	26	26	28	28	31	16	13	8.1	21	7.9	54
30	19	26	25	27	---	31	15	12	7.6	20	7.4	54
31	19	---	25	27	---	31	---	12	---	19	7.1	---
MEAN	26.5	33.6	25.1	24.9	24.3	27.2	25.6	12.2	9.39	9.18	14.3	36.2
MAX	45	56	27	32	28	33	33	15	12	22	21	59
MIN	19	24	23	23	22	22	15	9.5	7.6	3.4	7.1	7.0
IN.	. 15	. 19	. 15	. 14	. 13	. 16	. 14	. 07	. 05	. 05	. 08	. 20

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951-2000, BY WATER YEAR (WY)

MEAN	117	65.3	99.0	141	222	250	219	87.0	87.7	111	432	381	756
MAX	816	305	771	624	813	828	1176	1266					
(WY)	1995	1998	1977	1987	1986	1991	1973	1964	1957	1958	1991	1957	
MIN	6.26	8.18	6.22	9.47	7.50	9.97	13.2	7.73	4.80	4.49	8.31	9.12	
(WY)	1994	1969	1991	1957	1957	1957	1955	1955	1955	1955	1993	1993	

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

39.0		
162	Jul	2
19	May	2
19	Apr	30
2.68		
74		
20		

FOR 2000 WATER YEAR

22.3		
59	Sep	25
3.4	Jul	11
4.0	Jul	7
60	Sep	25
3.26	Sep	25
3.4	Jul	10
1.53		
33		
23		
8.8		

WATER YEARS 1951 - 2000

142			
317			1991
18.1			1955
2480	Sep 18	1957	
2.4	Jul	8	1955
2.6	Jul	3	1955
2540	Sep 17	1957	
12.78	Sep 17	1957	
2.3	Jul	8	1955
9.76			
373			
61			
18			

LOCATION.--Lat $30^{\circ} 22^{\prime} 11^{\prime \prime}$, long $83^{\circ} 48^{\prime} 25^{\prime \prime}$ in $\mathrm{NE} 1_{1}^{4} \sec .27$, T. 1 S., R. 5 E., Madison County. Hydrologic Unit 03110103, near left bank on downstream side of bridge on U.S. Highway 19.0 .6 mi southeast of Lamont and 34 mi upstream from mouth.
DRAINAGE AREA.-- $747 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--February 1950 to September 1979; November 1983 to September 1992 (gage heights and peak discharge only); October 1996 to current year.
REVISED RECORDS.--WSP 1204, 1905: Drainage area. WSP 1504: 1953.
Gage.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to September 1992, at datum 42.90 ft lower. REMARKS.--Pumpage above and below station for irrigation during dry seasons. Since Aug. 27, 1963, low-head rock and concrete dam 0.6 mi downstream.
COOPERATION.--Records from October 1999 to September 2000, were collected and computed by Suwannee River Water Management District and reviewed by Geological Survey.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $11,500 \mathrm{ft}^{3} / \mathrm{s}$. Apr. 8, 1973, gage height, 16.57 ft . river dry at gage June 13-16, 1955.
EXTREMES FOR CURRENT YEAR.--Maximum daily discharge $234 \mathrm{ft}^{3} / \mathrm{s}$, Apr. 5 , gage height, 49.17 ft ; minimum daily, $85 \mathrm{ft}^{3} / \mathrm{s}$, July 11 .
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	17	7.6	10	23	58	175	66	4.9	3.2	1.8	1.3
2	13	30	7.4	10	23	54	191	61	4.7	2.2	3.1	1.3
3	11	40	7.2	10	22	51	212	53	4.5	1.9	3.7	2.2
4	10	36	7.6	10	21	48	232	46	4.3	1.6	3.7	3.2
5	10	29	7.6	10	22	45	234	38	5.4	1.4	3.7	4.4
6	14	26	7.6	11	23	42	222	32	13	1.3	3.4	7.0
7	16	26	7.4	9.8	23	38	204	26	9.3	1.1	3.0	19
8	16	25	7.0	9.6	22	36	190	22	6.6	e1.0	2.7	19
9	14	23	7.2	9.8	21	36	172	18	5.5	e. 90	2.5	14
10	12	24	7.2	10	21	35	154	15	5.0	e. 85	2.9	10
11	12	23	7.4	11	21	34	137	13	4.7	. 85	3.1	8.6
12	12	14	7.4	12	22	36	123	11	4.5	. 93	3.4	7.6
13	12	12	7.7	12	25	36	113	10	5.0	1.1	4.4	6.2
14	11	11	8.4	12	30	34	104	9.3	5.5	1.8	4.1	5.2
15	10	10	9.6	12	45	32	97	8.2	5.2	1.9	3.4	4.5
16	10	9.8	9.3	13	50	31	90	7.6	5.0	1.8	2.9	3.9
17	10	9.3	8.6	12	62	36	81	6.9	4.8	1.5	2.4	3.5
18	9.3	9.1	8.4	12	58	39	72	6.5	4.5	1.3	2.2	9.8
19	9.1	9.1	8.9	12	48	36	63	6.1	4.4	1.1	1.9	34
20	9.3	9.3	9.3	13	42	51	56	5.9	4.4	1.0	2.0	29
21	9.3	9.6	10	14	42	68	50	5.6	5.2	. 90	2.3	25
22	9.6	9.6	11	15	48	63	45	5.6	5.1	. 93	2.6	30
23	9.6	8.6	11	15	49	59	40	8.2	5.0	1.5	2.7	72
24	9.3	8.4	10	22	48	58	34	9.8	5.7	1.2	2.4	71
25	8.9	8.6	10	35	46	56	34	8.6	6.9	1.8	2.0	64
26	8.6	8.6	9.8	32	43	53	33	7.4	6.2	2.4	1.8	69
27	8.6	8.6	10	27	42	66	31	6.6	5.6	2.8	2.0	72
28	8.9	7.7	9.8	23	65	87	32	6.2	6.1	2.2	2.0	73
29	9.1	7.6	10	21	66	86	46	5.7	6.0	1.8	1.8	69
30	9.6	7.6	10	20	---	85	62	5.3	5.4	1.6	1.5	63
31	12	---	10	21	---	119	---	5.0	---	1.5	1.4	---
TOTAL	340.2	477.5	270.4	466.2	1073	1608	3329	535.5	168.4	47.36	82.8	801.7
MEAN	11.0	15.9	8.72	15.0	37.0	51.9	111	17.3	5.61	1.53	2.67	26.7
MAX	16	40	11	35	66	119	234	66	13	3.2	4.4	73
MIN	8.6	7.6	7.0	9.6	21	31	31	5.0	4.3	. 85	1.4	1.3
AC-FT	675	947	536	925	2130	3190	6600	1060	334	94	164	1590
CFSM	. 01	. 02	. 01	. 02	. 05	. 07	. 15	. 02	. 01	. 00	. 00	. 04
IN.	. 02	. 02	. 01	. 02	. 05	. 08	. 17	. 03	. 01	. 00	. 00	. 04

WTR YR 2000 TOTAL 9200.06 MEAN 25.1 MAX 234 MIN . 85 AC-FT 18250 CFSM . 03 IN. . 46
e Estimated

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	46.97	47.01	46.65	46.78	47.14	47.83	48.83	47.91	46.43	46.21	45.96	45.82
2	46.88	47.30	46.64	46.77	47.14	47.77	48.94	47.85	46.41	46.05	46.20	45.91
3	46.82	47.51	46.63	46.77	47.12	47.72	49.06	47.74	46.39	45.97	46.28	46.05
4	46.79	47.42	46.65	46.78	47.11	47.67	49.16	47.61	46.36	45.90	46.28	46.22
5	46.79	47.28	46.65	46.78	47.12	47.60	49.17	47.47	46.49	45.85	46.29	46.37
6	46.90	47.23	46.65	46.80	47.16	47.54	49.11	47.34	46.87	45.81	46.25	46.62
7	46.98	47.22	46.64	46.76	47.15	47.47	49.02	47.22	46.74	---	46.19	47.05
8	46.96	47.19	46.62	46.75	47.13	47.42	48.93	47.12	46.59	---	46.14	47.05
9	46.90	47.16	46.63	46.76	47.11	47.41	48.81	47.02	46.50	---	46.10	46.92
10	46.86	47.17	46.63	46.77	47.10	47.40	48.69	46.94	46.44	---	46.17	46.78
11	46.83	47.14	46.64	46.81	47.10	47.38	48.58	46.88	46.41	45.66	46.20	46.71
12	46.86	46.91	46.64	46.83	47.13	47.43	48.48	46.82	46.39	45.69	46.24	46.65
13	46.83	46.83	46.66	46.83	47.19	47.43	48.38	46.77	46.45	45.76	46.38	46.56
14	46.81	46.80	46.70	46.85	47.31	47.38	48.29	46.74	46.50	45.95	46.34	46.47
15	46.78	46.79	46.75	46.86	47.60	47.33	48.22	46.69	46.47	45.98	46.24	46.39
16	46.77	46.76	46.74	46.87	47.70	47.32	48.15	46.65	46.44	45.94	46.16	46.31
17	46.76	46.74	46.71	46.86	47.86	47.43	48.06	46.61	46.42	45.88	46.09	46.25
18	46.74	46.73	46.70	46.85	47.81	47.48	47.97	46.58	46.39	45.81	46.03	46.76
19	46.73	46.73	46.72	46.86	47.65	47.43	47.88	46.55	46.37	45.76	45.98	47.38
20	46.74	46.74	46.74	46.88	47.53	47.71	47.79	46.53	46.37	45.72	46.01	47.28
21	46.74	46.75	46.77	46.91	47.55	47.93	47.70	46.51	46.47	45.68	46.06	47.19
22	46.75	46.75	46.82	46.93	47.65	47.87	47.60	46.51	46.46	45.69	46.11	47.31
23	46.75	46.71	46.82	46.95	47.68	47.83	47.49	46.69	46.45	45.87	46.14	47.97
24	46.74	46.70	46.79	47.12	47.67	47.81	47.39	46.76	46.52	45.78	46.08	47.96
25	46.72	46.71	46.77	47.40	47.63	47.78	47.39	46.71	46.61	45.94	45.99	47.89
26	46.71	46.71	46.76	47.35	47.56	47.74	47.36	46.64	46.56	46.08	45.96	47.94
27	46.71	46.71	46.77	47.24	47.53	47.91	47.32	46.59	46.51	46.15	45.99	47.97
28	46.72	46.66	46.76	47.14	47.91	48.12	47.34	46.56	46.55	46.05	45.99	47.98
29	46.73	46.65	46.78	47.09	47.92	48.11	47.63	46.52	46.54	45.96	45.94	47.94
30	46.75	46.65	46.78	47.08	---	48.10	47.86	46.48	46.48	45.90	45.88	47.88
31	46.86	---	46.78	47.11	---	48.44	---	46.45	---	45.87	45.83	---
TOTAL	1450.88	1407.66	1447.99	1454.54	1375.26	1477.79	1446.60	1453.46	1394.58	---	1429.50	1409.58
MEAN	46.80	46.92	46.71	46.92	47.42	47.67	48.22	46.89	46.49	---	46.11	46.99
MAX	46.98	47.51	46.82	47.40	47.92	48.44	49.17	47.91	46.87	---	46.38	47.98
MIN	46.71	46.65	46.62	46.75	47.10	47.32	47.32	46.45	46.36	---	45.83	45.82

LOCATION.--Lat $30^{\circ} 43^{\prime} 08^{\prime \prime}$, long $83^{\circ} 55^{\prime} 52^{\prime \prime}$, in Thomas County, Hydrologic Unit 03120001 , on downstream side of bridge on dirt road, and 3.6 mi east of Metcalf. DRAINAGE AREA.-- $15.1 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1998 to current year.
GAGE.--Water-stage recorder.
REMARKS.--Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 02	. 00	. 00	. 00	. 00	3.3	3.1	3.4	. 00	. 09	. 00	. 00
2	. 02	. 00	. 00	. 00	. 00	2.4	1.7	1.9	. 00	. 00	. 00	. 00
3	. 04	. 00	. 00	. 00	. 00	1.6	2.0	. 95	. 00	. 00	. 00	. 00
4	. 05	. 00	. 00	. 00	. 00	. 71	1.8	. 47	. 00	. 00	. 00	. 00
5	. 05	. 00	. 00	. 00	. 00	. 23	1.2	. 21	. 00	. 00	. 00	. 00
6	. 04	. 00	. 00	. 00	. 00	. 03	. 71	. 09	. 00	. 00	. 00	. 00
7	. 04	. 00	. 00	. 00	. 00	. 03	. 47	. 03	. 00	. 00	. 00	. 23
8	. 02	. 00	. 00	. 00	. 00	. 03	. 23	. 00	. 00	. 00	. 00	. 21
9	. 03	. 00	. 00	. 00	. 00	. 03	. 05	. 00	. 00	. 00	. 00	. 06
10	. 06	. 00	. 00	. 00	. 00	. 03	. 01	. 00	. 00	. 00	. 00	. 06
11	. 08	. 00	. 00	. 00	. 00	. 03	. 00	. 00	. 00	. 00	. 00	. 06
12	. 08	. 00	. 00	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 06
13	. 08	. 00	. 00	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 06
14	. 04	. 00	. 00	. 00	. 00	. 04	. 00	. 00	. 00	. 43	. 00	. 06
15	. 03	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 35	. 00	. 06
16	. 01	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 06
17	. 00	. 00	. 00	. 00	. 00	. 16	. 00	. 00	. 00	. 00	. 00	. 06
18	. 00	. 00	. 00	. 00	. 00	. 11	. 00	. 00	. 00	. 00	. 00	. 06
19	. 00	. 00	. 00	. 00	. 00	. 11	. 00	. 00	. 00	. 00	. 00	. 06
20	. 00	. 00	. 00	. 00	. 00	. 35	. 00	. 00	. 00	. 00	. 00	. 06
21	. 00	. 00	. 00	. 00	. 00	2.8	. 00	. 00	. 00	. 00	. 00	. 06
22	. 00	. 00	. 00	. 00	. 00	4.9	. 00	. 00	. 00	. 00	. 00	. 06
23	. 00	. 00	. 00	. 00	. 00	5.3	. 00	. 00	. 00	. 00	. 00	. 23
24	. 00	. 00	. 00	. 00	. 00	4.7	. 00	. 00	. 00	. 00	. 00	. 23
25	. 00	. 00	. 00	. 00	. 00	4.1	8.5	. 00	. 00	. 00	. 00	. 26
26	. 00	. 00	. 00	. 00	. 00	3.7	12	. 00	. 00	. 00	. 00	. 26
27	. 00	. 00	. 00	. 00	. 00	4.0	15	. 00	. 00	. 00	. 00	. 18
28	. 00	. 00	. 00	. 00	. 03	3.4	12	. 00	. 11	. 00	. 00	. 16
29	. 00	. 00	. 00	. 00	. 88	2.8	8.4	. 00	. 14	. 00	. 00	. 14
30	. 00	. 00	. 00	. 00	---	2.8	5.2	. 00	. 14	. 00	. 00	. 06
31	. 00	---	. 00	. 00	---	4.1	---	. 00	---	. 00	. 00	---
MEAN	. 022	. 000	. 000	. 000	. 031	1.67	2.41	. 23	. 013	. 028	. 000	. 093
MAX	. 08	. 00	. 00	. 00	. 88	5.3	15	3.4	. 14	. 43	. 00	. 26
MIN	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

MEAN 6.77 . 21	. 000	1.72	72	3.99	2.10		1.22		. 74	1.75	5.22		67		. 062
MAX 13.5 . 43	. 000	3.44	44	8.09	2.53		2.41		1.25	3.49	10.4		34		. 093
(WY) 19991999	1999	1999	99	1999	1999		2000		1999	1999	1999		99		2000
MIN . 022 . 000	. 000	. 000	00	. 031	1.67		. 029		. 23	. 013	. 028		00		. 031
(WY) 20002000	1999	2000	00	2000	2000		1999		2000	2000	2000		00		1999
SUMMARY STATISTICS	FOR	1999 C	CALENDAR	AR YEAR		FOR	2000	WAT	R YEAR		WATER	YEARS	1999	-	2000
ANNUAL MEAN			2.52					. 37				04			
HIGHEST ANNUAL MEAN												71			1999
LOWEST ANNUAL MEAN												37			2000
HIGHEST DAILY MEAN			25	Jul 19			15		Apr 27		e100		Oct	1	1998
LOWEST DAILY MEAN			. 00	Apr 23				. 00	Oct 17			00	Nov	23	1998
ANNUAL SEVEN-DAY MINIMUM			. 00	Apr 23				. 00	Oct 17			00	Nov	23	1998
INSTANTANEOUS PEAK FLOW							15		Apr 27		e100		Oct	1	1998
INSTANTANEOUS LOW FLOW								. 00	Oct 17			00	Nov	23	1998
10 PERCENT EXCEEDS			6.8					. 29							
50 PERCENT EXCEEDS			. 10					. 00				02			
90 PERCENT EXCEEDS			. 00					. 00				00			

e Estimated

LOCATION.--Lat $30^{\circ} 16^{\prime} 00^{\prime \prime}$, long $84^{\circ} 09^{\prime} 00^{\prime \prime}$, in $\mathrm{SE}^{1} / 4$ sec. 32 , T. 2 S., R. 2 E., Wakulla County, Hydrologic Unit 03120001 , on left bank 0.9 mi downstream from Rhodes Springs, 6 mi north of Newport, 11 mi upstream from Wakulla River, and 14 mi upstream from mouth.
DRAINAGE AREA.--535 mi ${ }^{2}$ including $240 \mathrm{mi}^{2}$ of Lake Miccosukee, which contributes at high stages to the St. Marks River.
PERIOD OF RECORD.--October 1956 to September 1976. October 1976 to September 1977 (gage heights only); October 1977 to September 1990; October 1990 to September 1991 (gage heights and peak discharge only); October 1991to September 1994; July 1996 to current year.
REVISED RECORDS.--WSP 1905: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 3.53 ft above National Geodetic Vertical Datum of 1929.
REMARKS.--No estimated daily discharge. Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	396	426	448	421	441	458	381	427	400	386	448	551
2	396	437	447	422	439	453	385	430	398	383	448	564
3	396	429	446	422	439	446	392	430	396	379	449	574
4	397	427	445	425	440	440	394	432	395	377	460	578
5	400	425	447	421	435	429	387	432	391	374	469	592
6	400	425	447	416	434	420	390	434	388	373	482	956
7	397	425	441	414	433	413	392	432	383	373	482	1000
8	398	425	439	413	433	409	394	431	382	372	474	949
9	400	426	440	414	433	404	388	431	383	372	474	916
10	404	428	440	423	433	401	391	430	381	372	487	897
11	409	428	438	419	434	401	394	429	378	374	494	875
12	408	425	438	415	438	394	398	427	378	375	552	853
13	407	422	443	413	441	384	403	426	379	380	600	835
14	407	423	440	407	459	378	403	425	378	384	584	821
15	404	424	438	404	464	373	407	421	379	385	578	811
16	403	424	435	404	465	376	413	420	380	386	571	797
17	401	422	433	405	463	379	415	421	378	385	571	786
18	401	425	435	407	464	375	414	422	378	383	573	791
19	399	428	441	409	464	371	413	422	380	381	572	786
20	401	435	438	413	459	384	413	421	377	383	585	775
21	402	438	444	408	455	376	415	420	377	385	588	770
22	404	440	446	408	453	367	412	421	378	407	579	905
23	402	442	443	417	450	359	411	423	377	414	577	1070
24	399	446	440	444	450	352	420	423	380	412	573	1030
25	400	452	432	437	453	348	423	423	383	443	580	998
26	401	458	428	427	455	351	422	421	384	450	579	974
27	401	456	425	424	463	368	423	418	385	443	574	943
28	400	456	422	423	466	371	426	415	387	443	570	917
29	401	456	420	428	462	368	426	409	388	443	568	890
30	402	450	419	435	---	374	427	404	389	446	559	868
31	405	---	419	440	---	378	---	402	---	446	554	---
MEAN	401	434	437	419	449	390	406	423	384	397	537	836
MAX	409	458	448	444	466	458	427	434	400	450	600	1070
MIN	396	422	419	404	433	348	381	402	377	372	448	551
IN.	. 87	. 91	. 94	. 90	. 91	. 84	. 85	. 91	. 80	. 86	1.16	1.74

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1957-2000, BY WATER YEAR (WY)

MEAN	650	550	583	636	746	883	852	676	681	720	768
MAX	1375	976	1470	1360	1680	2520	2760	1474	1465	1440	2220
(WY)	1958	1960	1965	1987	1986	1991	1973	1965	1965	1994	1994
MIN	351	339	358	345	335	338	378	371	355	360	370
(WY)	1969	1969	1991	1957	1957	1957	1968	1968	1968	1968	1968

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1957-2000

ANNUAL MEAN	452	
HIGHEST ANNUAL MEAN		
LOWEST ANNAL MEAN		
HIGHEST DAILY MEAN	755	Jul 20
LOWEST DAITY MEAN	375	Jan 22
ANNUAL SEEEN-DAY MINIMUM		
INSTANTANEOUS PEAK FLOW		
INSTANTANEOS PEAK STAGE		
INSTANTANEOUS LOW FLOW		
ANNUAL RUNFF (INCHES)	11.47	
10 PERCENT EXCEEDS	560	
50 PERCENT EXCEEDS	427	
90 PERCENT EXCEEDS		

459		708		
		1148		1994
		403		1968
1070	Sep 23	4700	Apr	61973
348	Mar 25	315	Oct	41968
359	Mar 22	328	Mar	121957
1130	Sep 6	4750	Apr	71973
6.37	Sep 6	11.81	Apr	71973
343	Mar 26	310	Apr	251964
11.68		17.99		
575		1080		
423		629		
379		405		

LOCATION.--Lat $30^{\circ} 11^{\prime} 17^{\prime \prime}$, long $84^{\circ} 24^{\prime} 30^{\prime \prime}$ in $\mathrm{SE}^{1} / 4 \mathrm{sec}$. 26, T. 3 S., R. 2 W., Wakulla County, Hydrologic Unit 03120001 , on downstream side of bridge on State Highway 368, and 0.5 mi east of Arran.
DRAINAGE AREA.--70.4 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1928 to May 1981, miscellaneous discharge measurements only; October 1998 to current year.
GAGE.--Water-stage recorder.
REMARKS.--No estimated daily discharges. Records Fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	274	17	7.2	16	92	35	88	2.5	1.3	1.3	. 93	1.4
2	176	67	6.8	16	83	32	72	2.3	1.3	1.3	. 96	1.5
3	127	134	6.8	15	71	28	60	2.1	1.3	1.2	1.0	1.4
4	98	148	6.7	14	61	23	50	2.0	1.3	1.2	1.1	2.7
5	79	128	5.9	14	52	19	41	1.8	1.3	1.2	1.1	6.0
6	65	105	6.1	14	45	16	34	1.7	1.3	1.2	2.5	191
7	54	77	6.3	13	39	13	28	1.5	1.3	1.2	39	955
8	46	58	6.3	12	34	12	22	1.5	1.3	1.2	45	1070
9	42	46	6.8	12	31	11	18	1.5	1.2	1.3	29	701
10	39	38	6.8	12	27	11	14	1.4	1.2	1.2	19	427
11	52	32	7.1	21	24	11	12	1.4	1.3	1.2	24	268
12	167	28	7.4	28	21	11	11	1.4	1.3	1.1	41	171
13	170	23	7.5	25	19	10	10	1.4	1.2	1.2	42	124
14	139	20	7.9	23	25	10	9.9	1.4	1.3	1.2	32	99
15	113	17	7.9	24	32	9.9	9.7	1.3	1.3	1.2	19	74
16	92	15	8.4	23	28	10	9.5	1.3	1.3	1.2	9.9	55
17	75	14	8.5	20	27	12	9.0	1.3	1.2	1.1	2.5	44
18	60	12	8.7	18	25	15	8.0	1.4	1.2	1.1	1.3	50
19	50	12	9.5	16	23	20	7.1	1.5	1.2	1.1	1.1	52
20	42	11	18	15	20	35	6.5	1.4	1.2	1.2	. 95	47
21	35	10	24	13	18	51	6.1	1.4	1.2	1.2	. 90	43
22	31	9.3	40	12	17	58	5.6	1.4	1.3	1.2	. 82	1350
23	27	9.2	52	12	15	52	5.1	1.4	1.3	1.2	. 73	3960
24	22	9.0	53	38	13	43	4.5	1.4	1.3	1.2	. 64	2890
25	19	8.8	46	85	12	33	4.2	1.4	1.3	1.3	. 56	1960
26	16	8.7	40	102	12	28	3.9	1.4	1.3	2.1	. 89	1320
27	15	8.5	33	91	12	33	3.6	1.4	1.3	1.1	1.5	825
28	13	8.2	28	78	20	62	3.3	1.3	1.3	1.1	2.3	532
29	13	7.7	24	72	27	89	2.9	1.3	1.3	1.0	1.5	380
30	13	7.3	21	74	---	103	2.7	1.4	1.3	1.0	1.1	277
31	12	---	18	90	---	100	---	1.3	---	. 94	1.2	---
MEAN	70.2	36.3	17.3	32.8	31.9	32.1	18.7	1.52	1.27	1.20	10.5	596
MAX	274	148	53	102	92	103	88	2.5	1.3	2.1	45	3960
MIN	12	7.3	5.9	12	12	9.9	2.7	1.3	1.2	. 94	. 56	1.4

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

MEAN	174	19.5	9.92	41.2	35.9	43.5	11.4	2.81	6.24	49.5	32.7
MAX	277	36.3	17.3	49.5	40.0	54.9	18.7	4.10	11.2	97.9	54.9
(WY)	1999	2000	2000	1999	1999	1999	2000	1999	1999	1999	1999
MIN	70.2	2.67	2.56	32.8	31.9	32.1	4.11	1.52	1.27	1.20	10.5
(WY)	2000	1999	1999	2000	2000	2000	1999	2000	2000	2000	2000

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

43.4		
771	Sep 29	
2.0	Apr	18
2.0	Apr	18
111		
20		
3.1		

FOR 2000 WATER YEAR

70.0		
3960	Sep 23	
.56	Aug 25	
.78	Aug 20	
4170	Sep 23	
18.19	Sep 23	
.47	Aug 25	
90		
12		
1.2		

WATER YEARS 1999 - 2000

63.5		
70.0		2000
57.0		1999
3960	Sep 23 2000	
.56	Aug 25 2000	
.78	Aug 20 2000	
4170	Sep 23 2000	
18.19	Sep 23 2000	
.47	Aug 25 2000	
99		
12		

LOCATION.--Lat $30^{\circ} 07^{\prime} 45^{\prime \prime}$, long $84^{\circ} 29^{\prime} 40^{\prime \prime}$ in NW $1 / 4$ sec. 24 , T. 4 S., R. 3 W., Wakulla County, Hydrologic Unit 03120003, Apalachicola National Forest, near left bank on downstream side of bridge on U.S. Forest Road 343, 4.7 mi north of Sopchoppy, 5.2 mi upstream from Duval Branch, and 24 mi upstream from mouth.
DRAINAGE AREA.--102 mi^{2}.
PERIOD OF RECORD.--Water years 1961-64 (annual maximum); June 1964 to current year.
REVISED RECORDS.--WSP 1905, WRD FL-76-4: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Jan. 27, 1961 to June 3, 1964, nonrecording gage and crest-stage gage at same site at datum 9.63 ft higher.
REMARKS.--No estimated daily discharges. Records fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	480	17	5.0	18	148	20	140	2.4	1.3	1.2	35	3.8
2	340	142	4.8	18	133	19	119	2.4	1.2	. 97	59	3.5
3	251	209	4.7	17	116	16	99	2.3	1.2	. 81	71	5.0
4	189	223	4.6	15	98	13	85	2.3	1.2	. 77	126	9.9
5	148	196	4.4	15	84	11	71	2.1	1.3	. 79	204	33
6	117	163	4.4	15	71	9.3	58	2.1	1.2	. 77	168	654
7	92	132	4.4	14	60	7.9	46	2.0	1.2	. 69	126	2030
8	74	107	4.4	13	51	6.7	37	1.9	1.2	. 73	89	2220
9	70	86	4.4	12	44	5.9	29	1.9	1.2	1.0	66	1670
10	84	70	4.4	13	37	5.2	23	1.8	1.1	1.3	88	1080
11	121	57	4.4	23	31	5.4	19	1.7	1.1	1.1	102	697
12	348	47	4.3	30	27	5.6	15	1.7	1.2	. 95	206	488
13	366	38	4.5	27	23	4.7	12	1.7	1.2	1.1	190	345
14	323	30	4.8	27	28	4.2	10	1.7	1.2	1.2	158	249
15	256	25	4.9	29	43	3.8	8.8	1.7	1.1	1.2	130	181
16	204	20	5.5	26	40	4.6	7.6	1.7	1.2	1.2	99	134
17	160	16	5.8	23	34	11	6.6	1.7	1.7	1.1	74	100
18	123	14	6.1	20	30	15	5.6	1.7	1.5	. 91	53	114
19	94	12	10	18	27	16	4.8	1.7	1.4	. 99	38	115
20	73	10	18	16	23	36	4.3	1.7	1.3	1.5	35	100
21	58	9.5	20	14	19	46	3.9	1.6	1.3	2.6	30	94
22	47	8.6	52	13	16	45	3.6	1.7	1.5	11	29	2430
23	37	7.9	59	13	13	37	3.3	1.6	1.7	13	29	6610
24	29	7.5	56	76	11	29	3.3	1.6	1.6	30	23	4620
25	23	7.2	49	158	9.9	22	3.3	1.6	1.6	96	16	3220
26	19	7.0	42	164	8.6	20	3.1	1.6	1.7	183	12	2150
27	16	6.6	36	153	8.9	38	2.9	1.7	1.4	150	9.1	1350
28	14	6.2	31	136	11	49	2.8	1.6	1.5	98	7.2	822
29	12	5.8	26	129	15	69	2.7	1.5	1.0	67	6.6	580
30	11	5.4	22	131	---	129	2.6	1.3	1.0	47	5.4	420
31	9.9	---	20	156	---	152	---	1.3	-	32	4.4	---
MEAN	135	56.2	17.0	49.4	43.5	27.6	27.7	1.78	1.31	24.2	73.8	1084
MAX	480	223	59	164	148	152	140	2.4	1.7	183	206	6610
MIN	9.9	5.4	4.3	12	8.6	3.8	2.6	1.3	1.0	. 69	4.4	3.5
MED	92	18	5.5	20	30	16	8.2	1.7	1.2	1.2	59	454
IN.	1.53	. 61	. 19	. 56	. 46	. 31	. 30	. 02	. 01	. 27	. 83	11.86

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964-2000, BY WATER YEAR (WY)

MEAN	119	60.6	149	257	295	296	176	64.7	134	241	295	227
MAX	783	470	843	849	753	957	1065	424	520	763	1005	1084
(WY)	1995	1986	1965	1991	1986	1991	1973	1991	1982	1975	1994	2000
MIN	1.86	1.58	2.87	11.1	22.4	27.6	8.81	1.70	1.31	3.06	6.14	4.76
(WY)	1994	1991	1992	1985	1989	2000	1966	1992	2000	1977	1990	1990

SUMMARY STATISTICS

```
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
```

FOR 2000 WATER YEAR

127			
6610		Sep	23
.69	Jul	7	
.79	Jul	2	
7100	Sep	23	
34.25	Sep	23	
.63	Jul	7	
16.97			
165			
16			
1.3			

1.3

WATER YEARS 1964-2000

192			
334			1991
43.4			1968
6610		Sep	23
2000			
.69	Jul	7	2000
.79	Jul	2	2000
7100	Sep	23	2000
34.47	Jul	31	1975
.63	Jul	7	2000
25.51			
513			
62			
3.2			

LOCATION.--Lat $30^{\circ} 40^{\prime} 08^{\prime \prime}$, long $84^{\circ} 18^{\prime} 19^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{sec} .11$, T. 3 N., R. 1 W., Gadsden County, Hydrologic Unit 03120003, near center of stream on downstream side of bridge on State Highway 12, and 3.7 mi east of Concord.
DRAINAGE AREA.-- $1002 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--November 1920 to October 1990 (miscellaneous discharge measurements), October 1998 to current year.
GAGE.--Water-stage recorder
REMARKS.--No estimated daily discharges. Records good.
EXTREMES FOR PERIOD OF RECORD.--Maximum gage-height, 39.69 ft , from floodmarks, Oct. 2, 1998, discharge not determined.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	75	52	56	124	393	611	1320	309	32	64	36	14
2	71	92	56	117	375	599	1360	252	30	60	34	17
3	68	186	54	112	352	610	1310	214	29	56	37	23
4	68	186	55	109	333	601	1200	186	28	52	42	22
5	68	150	55	107	311	560	1050	164	27	46	50	67
6	68	129	55	108	284	498	899	146	27	42	74	229
7	73	112	55	112	258	435	744	131	26	38	80	480
8	83	100	54	109	236	385	619	119	28	35	63	648
9	89	91	55	108	218	340	520	108	26	32	48	730
10	91	83	55	108	204	304	440	101	26	29	41	872
11	129	78	55	115	193	277	376	93	25	27	34	1050
12	156	72	56	153	183	269	328	87	24	26	30	1110
13	191	69	57	159	176	408	290	80	24	25	29	994
14	167	66	58	158	210	549	260	75	24	28	31	749
15	149	63	64	160	275	561	238	69	24	51	26	496
16	138	59	78	157	336	514	219	65	23	60	23	334
17	123	57	79	149	330	564	204	62	23	56	21	253
18	107	55	77	139	381	783	191	58	24	46	19	210
19	95	52	81	133	486	956	181	55	24	38	18	183
20	86	51	94	134	608	1100	174	52	24	33	18	170
21	78	51	113	140	739	1250	169	49	26	30	19	164
22	73	52	159	139	835	1430	158	47	34	28	18	179
23	69	52	259	138	869	1550	146	46	43	26	17	283
24	65	52	283	147	811	1660	274	46	50	26	16	484
25	61	54	265	248	666	1690	877	44	75	27	17	585
26	58	57	232	338	515	1610	805	44	78	42	17	691
27	56	58	201	369	437	1450	632	43	67	45	15	850
28	53	58	176	394	497	1220	507	39	57	44	15	994
29	51	60	157	415	614	1000	431	37	54	45	14	1030
30	52	59	144	413	---	985	373	35	68	46	15	949
31	49	-	132	402	--	1230	---	34	---	41	14	---
MEAN	89.0	78.5	109	184	418	839	543	93.2	35.7	40.1	30.0	495
MAX	191	186	283	415	869	1690	1360	309	78	64	80	1110
MIN	49	51	54	107	176	269	146	34	23	25	14	14
CFSM	. 09	. 08	. 11	. 18	. 42	. 84	. 54	. 09	. 04	. 04	. 03	. 49
IN.	. 10	. 09	. 13	. 21	. 45	. 97	. 60	. 11	. 04	. 05	. 03	. 55

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

MEAN	1231	154	154	443	626	758	361	80.5	60.4	562	129
MAX	2373	230	199	702	841	839	543	93.2	85.1	1084	228
(WY)	1999	1999	1999	1999	1999	2000	2000	2000	1999	1999	1999
MIN	89.0	78.5	109	184	418	677	178	67.8	35.7	40.1	30.0
(WY)	2000	2000	2000	2000	2000	1999	1999	1999	2000	2000	2000

SUMMARY STATISTICS

FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR

LOCATION.--Lat $30^{\circ} 33^{\prime} 14^{\prime \prime}$, long $84^{\circ} 23^{\prime} 03^{\prime \prime}$, in $\operatorname{SE}{ }^{1} / 4 \mathrm{sec}$. 24, T. $2 \mathrm{~N} .$, R. 2 W. , Leon County, Hydrologic Unit 03120003 , near left bank on downstream side of downstream bridge on divided U.S. Highway 27, 0.8 mi upstream from Seaboard Air Line Railroad bridge, 4.0 mi downstream from Mill Creek, 5.0 mi southeast of Havana, and 94 mi upstream from mouth.
DRAINAGE AREA.--1,140 mi^{2}, approximately. At site used prior to January $1929,1,220 \mathrm{mi}^{2}$, approximately.
PERIOD OF RECORD.--June 1926 to current year. June 1926 to December 1929 (published as "at Ochlockonee"). Records published for both sites December 1928 to December 1929.
REVISED RECORDS.--WSP 822: 1929 (M). WSP 1504: 1928. WSP 1905: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 59.36 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1930, nonrecording gage at site about 10 mi downstream at datum 9.36 ft lower. Dec. 12,1928 , to Nov. 17,1963 , nonrecording gage at site 100 ft upstream at present datum. Nov. 18,1963 to Nov. 15, 1976, nonrecording gage at same site and datum.
REMARKS.--Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	79	69	65	142	363	548	1090	374	46	63	36	30
2	81	97	63	133	355	546	1150	323	44	60	33	27
3	80	124	62	127	342	537	1180	273	42	57	32	23
4	78	165	61	123	335	540	1150	235	41	55	33	26
5	78	171	62	118	317	529	1050	207	39	53	39	32
6	78	149	63	115	296	497	936	184	38	50	44	81
7	77	133	63	115	274	452	810	164	36	47	54	201
8	79	118	62	117	253	407	691	148	35	45	62	358
9	86	108	62	115	237	370	589	134	35	42	56	462
10	93	99	62	116	225	336	507	122	33	40	53	532
11	115	92	62	117	211	308	441	113	32	39	45	616
12	161	86	62	123	200	295	387	106	31	37	42	720
13	176	81	63	146	191	292	344	100	30	36	39	781
14	191	78	64	153	219	387	309	94	29	34	37	748
15	174	75	65	154	276	473	281	90	28	34	37	626
16	155	71	67	155	300	498	257	86	27	41	35	473
17	142	68	76	154	322	516	238	83	26	48	33	356
18	127	67	79	149	321	546	221	80	26	49	31	288
19	115	65	85	142	354	669	206	76	27	45	29	241
20	104	63	87	136	416	836	194	71	26	41	28	210
21	96	62	104	134	491	931	185	68	25	39	28	192
22	90	61	137	139	579	1020	176	65	26	e37	27	259
23	85	61	171	141	647	1140	165	62	28	e36	26	307
24	81	60	230	149	684	1260	218	59	35	35	24	345
25	78	60	251	167	660	1350	667	58	41	34	25	445
26	75	61	245	235	569	1390	861	57	54	32	25	508
27	72	63	225	295	480	1380	752	58	62	36	23	572
28	70	64	202	320	476	1290	614	56	67	40	21	656
29	68	64	181	339	499	1100	505	53	61	44	20	735
30	65	65	164	362	---	930	430	50	57	35	19	769
31	64	---	152	371	---	978	---	48	---	35	21	---
MEAN	100	86.7	110	171	376	721	553	119	37.6	42.5	34.1	387
MAX	191	171	251	371	684	1390	1180	374	67	63	62	781
MIN	64	60	61	115	191	292	165	48	25	32	19	23
MED	81	70	67	142	335	546	473	86	35	40	33	357
IN.	. 10	. 08	. 11	. 17	. 36	. 73	. 54	. 12	. 04	. 04	. 03	. 38

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1926-2000, BY WATER YEAR (WY)

MEAN	518	394	738	1317	1992	2278	1893	815	629	717	810	
MAX	6892	3594	6057	4332	9355	7718	9368	4282	3867	3345	6098	4279
(WY)	1995	1948	1965	1993	1986	1984	1948	1964	1973	1991	1928	
MIN	22.0	26.5	37.0	65.5	116	167	173	60.6	37.6	42.5	34.1	26.8
(WY)	1955	1934	1934	1934	1957	1955	1927	1927	2000	2000	2000	1954

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1926 - 2000
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

371		
1560	Jan	31
45	Jun	8
52	Jun	4
4.42		
993		
161		
63		

227		
1390	Mar 26	
19	Aug 30	
22	Aug 25	
1400	Mar 26	
19.21	Mar 26	
19	Aug 30	
2.71		
596		
105		
33		

1051				
2854			1948	
209			1968	
53100		Apr	4	1948
17		Oct	23	1954
17		Oct	22	1954
55900		Apr	4	1948
35.08	Apr	4	1948	
17		Oct	23	1954
12.53				
2580				
453				
84				

02329000 OCHLOCKONEE RIVER NEAR HAVANA, FL--Continued
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11.76	11.62	11.59	12.52	14.31	15.47	18.05	14.39	11.44	11.57	11.16	11.05
2	11.79	11.99	11.57	12.43	14.25	15.46	18.25	14.03	11.41	11.53	11.11	11.00
3	11.76	12.32	11.55	12.36	14.17	15.41	18.35	13.65	11.39	11.49	11.09	10.92
4	11.74	12.78	11.53	12.31	14.11	15.42	18.24	13.35	11.36	11.45	11.11	10.99
5	11.74	12.84	11.54	12.25	13.98	15.36	17.90	13.11	11.34	11.42	11.21	11.09
6	11.74	12.61	11.56	12.22	13.82	15.17	17.40	12.91	11.32	11.38	11.28	11.79
7	11.73	12.42	11.56	12.21	13.66	14.90	16.83	12.73	11.30	11.34	11.44	13.08
8	11.76	12.26	11.55	12.23	13.50	14.61	16.25	12.57	11.28	11.30	11.56	14.37
9	11.84	12.14	11.55	12.22	13.37	14.36	15.70	12.44	11.27	11.26	11.46	15.10
10	11.92	12.03	11.55	12.23	13.27	14.12	15.23	12.32	11.25	11.23	11.43	15.54
11	12.18	11.95	11.55	12.24	13.15	13.92	14.83	12.22	11.23	11.20	11.31	16.04
12	12.67	11.87	11.55	12.31	13.05	13.82	14.47	12.15	11.21	11.17	11.25	16.61
13	12.82	11.81	11.57	12.56	12.97	13.80	14.18	12.09	11.20	11.15	11.20	16.93
14	12.96	11.77	11.58	12.62	13.22	14.47	13.92	12.03	11.17	11.13	11.18	16.76
15	12.81	11.73	11.59	12.63	13.68	15.02	13.71	11.98	11.16	11.12	11.17	16.09
16	12.64	11.68	11.62	12.64	13.86	15.18	13.53	11.93	11.14	11.23	11.15	15.16
17	12.52	11.64	11.75	12.64	14.02	15.29	13.38	11.90	11.12	11.35	11.11	14.36
18	12.36	11.62	11.79	12.58	14.01	15.46	13.23	11.87	11.12	11.36	11.07	13.84
19	12.21	11.59	11.86	12.52	14.25	16.13	13.10	11.82	11.14	11.31	11.04	13.45
20	12.08	11.57	11.89	12.46	14.67	16.95	13.00	11.77	11.12	11.24	11.01	13.18
21	11.98	11.55	12.09	12.44	15.14	17.38	12.92	11.72	11.10	11.20	11.02	13.01
22	11.90	11.53	12.46	12.49	15.64	17.77	12.84	11.69	11.12	---	11.00	13.58
23	11.84	11.53	12.79	12.50	16.02	18.21	12.74	11.65	11.16	---	10.98	13.99
24	11.78	11.52	13.31	12.59	16.21	18.63	13.15	11.62	11.25	11.14	10.95	14.27
25	11.74	11.52	13.48	12.76	16.08	18.98	16.08	11.59	11.31	11.12	10.96	14.98
26	11.70	11.53	13.44	13.35	15.59	19.17	17.07	11.58	11.49	11.10	10.97	15.40
27	11.66	11.56	13.26	13.82	15.07	19.13	16.56	11.61	11.59	11.16	10.92	15.78
28	11.63	11.57	13.07	14.00	15.04	18.74	15.84	11.58	11.63	11.22	10.89	16.27
29	11.60	11.58	12.88	14.14	15.19	18.05	15.22	11.53	11.54	11.28	10.87	16.70
30	11.57	11.59	12.73	14.30	---	17.38	14.76	11.50	11.49	11.15	10.85	16.87
31	11.55	---	12.61	14.37	---	17.59	---	11.47	---	11.14	10.89	---
MEAN	12.00	11.86	12.08	12.74	14.32	16.17	15.22	12.22	11.29	---	11.12	14.27
MAX	12.96	12.84	13.48	14.37	16.21	19.17	18.35	14.39	11.63	---	11.56	16.93
MIN	11.55	11.52	11.53	12.21	12.97	13.80	12.74	11.47	11.10	---	10.85	10.92

LOCATION.--Lat $30^{\circ} 30^{\prime} 44^{\prime \prime}$, long $84^{\circ} 31^{\prime} 25^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{sec}$. 3, T.1N., R. 3W., Gadsen County, Hydrologic Unit 03120003, at bridge on State Highway 268 , 0.5 mi upstream from Monroe Creek, 3.2 mi above mouth, and 3.7 mi west of Midway
DRAINAGE AREA.--305 mi ${ }^{2}$.
PERIOD OF RECORD.--Annual maximums, water years 1965 to 1985. October 1985 to current year.
GAGE.--Water-stage recorder and crest-stage. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Oct. 22, 1985, nonrecording and crest-stage gages at same site and datum.
REMARKS.--Records good, except those below $200 \mathrm{ft}^{3} / \mathrm{s}$, which are fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	109	107	49	93	190	296	421	67	6.0	36	37	21
2	103	411	47	100	144	224	229	57	5.9	31	43	22
3	98	403	47	108	113	189	160	48	5.8	27	52	25
4	95	284	47	118	97	148	99	45	5.7	25	104	40
5	103	160	47	113	86	129	81	48	5.5	23	247	60
6	106	90	47	85	79	114	69	49	5.3	23	198	275
7	97	69	49	74	73	101	59	49	5.0	22	118	393
8	91	65	46	71	70	92	60	48	4.9	19	57	290
9	94	68	48	75	73	90	61	48	4.7	17	27	215
10	98	68	48	105	83	89	67	47	4.6	16	44	58
11	191	68	48	177	92	91	68	44	4.4	16	47	27
12	281	64	48	201	101	106	67	43	4.3	15	41	22
13	293	63	54	198	118	102	61	39	4.3	14	32	22
14	248	63	72	153	345	107	57	33	4.3	15	26	22
15	175	63	85	100	487	97	53	29	4.3	16	23	22
16	114	59	75	e92	314	153	48	26	4.3	18	22	20
17	97	57	70	e86	242	497	48	24	5.0	17	22	13
18	94	55	66	77	197	581	45	22	6.5	16	21	11
19	94	54	89	83	168	496	45	18	9.0	15	21	13
20	90	54	108	94	139	447	47	17	8.9	15	20	14
21	84	53	155	94	120	360	48	16	8.5	14	22	15
22	83	52	275	99	114	279	43	15	8.1	14	26	244
23	79	52	313	106	114	223	44	14	7.7	15	25	749
24	75	52	255	194	114	167	138	13	9.5	14	25	798
25	62	55	190	257	117	145	1300	11	17	21	24	616
26	60	57	131	259	116	137	1600	9.5	21	e23	25	299
27	61	58	103	215	161	201	649	9.4	19	24	23	146
28	61	57	89	130	448	211	251	7.7	22	31	22	63
29	59	56	79	99	425	145	152	6.9	26	34	22	45
30	57	50	78	134	---	132	87	6.5	30	36	21	33
31	55	---	85	215	---	469	---	6.3	---	34	21	---
MEAN	110	95.6	94.9	129	170	213	205	29.6	9.25	21.2	47.0	153
MAX	293	411	313	259	487	581	1600	67	30	36	247	798
MIN	55	50	46	71	70	89	43	6.3	4.3	14	20	11
IN.	. 42	. 35	. 36	. 49	. 60	. 81	. 75	. 11	. 03	. 08	. 18	. 56

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1986-2000, BY WATER YEAR (WY)

MEAN	377	336	358	661	765	781	355	232	307	300	344
MAX	2542	1497	876	1694	2139	1791	756	1136	875	1003	1617
(WY)	1995	1998	1986	1991	1986	1991	1994	1991	1989	1994	1994
MIN	24.0	90.9	93.8	96.0	155	213	116	29.6	9.25	21.2	47.0
(WY)	1991	1989	1989	1989	1989	2000	1999	2000	2000	2000	2000

SUMMARY STATISTICS

ANNUAL MEAN	167	
HIGHEST ANNUAL MEAN		
LOWEST ANNUAL MEAN	1130	Jan 25
HIGHEST DAILY MEAN	40	Jun
LOWEST DAILY MEAN	44	Jun
ANNUAL SEVEN-DAY MINIMUM		
INSTANTANEOUS PEAK FLOW		
INSTANTANEOUS PEAK STAGE		
INSTANTANEOUS LOW FLOW		
ANNUAL RUNOFF (INCHES)	309	
10 PERCENT EXCEEDS	107	
50 PERCENT EXCEEDS	55	
90 PERCENT EXCEEDS		

FOR 2000 WATER YEAR

106		
		Apr
1600	26	
4.3	Jun 12	
4.4	Jun 10	
1740	Apr	26
73.40	Apr 26	
3.8	Jun 14	
4.74		
247		
61		
14		

WATER YEARS 1986 - 2000

423				
709			1991	
106			2000	
30300		Oct	3	1994
4.3		Jun 12	2000	
4.4	Jun 10 2000			
49200	Sep 22	1969		
86.25	Sep 22	1969		
3.8	Jun 14	2000		
18.86				
928				
213				
64				

e Estimated

LOCATION.--Lat $30^{\circ} 22^{\prime} 59^{\prime \prime}$, long $84^{\circ} 39^{\prime} 18^{\prime \prime}$, in $\mathrm{NE}^{1} / 4$ sec. 20, T. 1 S., R. 4 W., Leon County, Hydrologic Unit 03120003 , on left bank at Old State Highway 20(Crooked Road), 3,000 ft downstream from C.H. Corn Hydroelectric Dam, 1.5 mi southwest of Bloxham, and 65 mi upstream from mouth.
DRAINAGE AREA.-- $1,700 \mathrm{mi}^{2}$, approximately.
PERIOD OF RECORD.--June 1926 to current year. Low-flow records not equivalent prior to October 1, 1954, due to undetermined amount of seepage inflow.
REVISED RECORDS.--WSP 1002: 1940-42. WSP 1704: 1958-59. WSP 1905, WRD FL-76-4: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 24.69 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 9, 1930, nonrecording gage at site 2,700 ft upstream at datum 5.00 ft higher. Apr. 9,1930 to Jan. 19, 1939, water-stage recorder at site 2,000 ft upstream at datum 5.00ft higher. Jan. 20 , 1939 to Sept. 30, 1954, water-stage recorder at present site at datum 5.00 ft higher. Oct. 1, 1954 to Sept. 30, 1985, water-stage recorder at present site and datum. Oct. 1, 1985 to Aug. 27, 1997, at site 2,000 ft upstream at present datum.
REMARKS.--No estimated daily discharges. Records fair, except those below $150 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Flow regulated since 1929 by C.H. Corn Hydroelectric Dam (formerly Jackson Bluff Dam) above station and storage in Lake Talquin (02329900). Since October 1981, the publication of adjusted values for storage has been discontinued since the difference between adjusted and the unadjusted values have been minimal. Maximum discharge, $89,400 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 23,1969 , gage height, 29.2 ft , from floodmark; minimum discharge, since October $1954,1.0 \mathrm{ft}^{3} / \mathrm{s}$, Nov. 1, 1957, caused by closure of breaks in earth embankment of C.H. Corn Hydroelectric Dam (indeterminate prior to October 1954).

EXTREMES OUTSIDE THE PERIOD OF RECORD.--Maximum stage since 1834, 32.64 ft , Sept. 30, 1957, from flood marks established by local resident, discharge not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAIL'Y MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	165	182	182	188	645	1170	1660	692	183	129	51	112
2	168	471	183	226	846	918	1680	565	107	136	51	131
3	170	840	183	230	666	875	1690	557	71	135	51	165
4	169	1080	183	232	618	776	1550	258	71	133	51	191
5	162	909	184	539	614	787	1290	182	72	117	67	297
6	162	530	183	649	562	812	1270	189	74	101	81	1190
7	162	466	183	496	552	741	1030	190	73	93	94	1990
8	164	176	183	206	547	744	718	192	70	75	136	1770
9	165	184	183	188	253	574	584	195	66	73	137	1540
10	167	182	184	197	200	560	576	196	74	69	203	995
11	172	183	183	197	200	563	576	196	69	62	212	911
12	303	197	183	197	188	592	575	196	54	62	212	895
13	540	189	187	199	194	605	575	196	55	59	209	885
14	745	190	186	654	550	565	572	194	55	45	208	879
15	895	189	188	761	1270	566	574	194	55	42	150	874
16	555	184	187	541	1190	863	554	193	54	43	80	1190
17	199	183	188	364	947	1560	252	194	53	42	74	1880
18	163	185	188	195	834	1660	208	196	52	43	98	537
19	168	182	189	190	613	1670	206	190	52	43	99	143
20	179	184	189	189	675	1710	208	187	54	44	101	146
21	159	189	517	189	608	1690	210	189	55	44	104	148
22	159	187	665	192	692	1610	206	188	56	44	107	1430
23	163	187	861	194	786	1430	206	189	55	46	102	3020
24	164	185	793	392	805	1410	211	189	57	46	102	2330
25	167	185	680	539	834	1410	249	188	56	53	104	1130
26	170	184	545	612	838	1480	1580	188	72	48	130	1460
27	171	183	512	929	1190	1760	2340	191	77	45	123	1360
28	170	183	510	930	1260	1730	1810	193	107	45	121	778
29	170	183	417	774	1190	1690	1160	192	128	46	121	765
30	170	182	216	559	---	1610	820	191	128	46	121	1060
31	169	---	205	546	---	1420	---	190	---	47	108	---
MEAN	239	291	310	403	702	1147	838	234	73.5	66.3	116	1007
MAX	895	1080	861	930	1270	1760	2340	692	183	136	212	3020
MIN	159	176	182	188	188	560	206	182	52	42	51	112
IN.	. 16	. 19	. 21	. 27	. 45	. 78	. 55	. 16	. 05	. 04	. 08	. 66

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1926-2000, BY WATER YEAR (WY)

MEAN	1018	783	1338	2053	2872	3314	2805	1354	1165	1291	1461
MAX	10550	4943	8913	5671	12290	9313	13240	4880	4942	4007	6835
(WY)	1995	1948	1965	1993	1986	1984	1948	1964	1973	1991	1928
MIN	50.0	52.5	82.6	222	243	296	327	172	73.5	66.3	116
(WY)	1955	1955	1959	1935	1957	1955	1999	1927	2000	2000	2000

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR

ANNUAL MEAN	645		
HIGHEST ANNUAL MEAN			
LOWEST ANNUAL MEAN			
HIGHEST DAILY MEAN	120	Jan	24
LOWEST DAILY MEAN	150	Apr	25
ANNUAL SEVEN-DAY MINIMUM		Apr	19
INSTANTANEOUS PEAK FLOW			
INSTANTANEOUS PEAK STAGE			
INSTANTANEOUS LOW FLOW	5.15		
ANNUAL RUNOFF (INCHES)	1550		
10 PERCENT EXCEEDS	286		
50 PERCENT EXCEEDS	161		
90 PERCENT EXCEEDS			

450		1695		
		4516		1948
		315		1955
3020	Sep 23	73200	Sep 23	1969
42	Jul 15	.00	Sep 20	1929
43	Jul 15	2.6	Sep 26	1958
3380	Sep 23	89400	Sep 25	1969
12.47	Sep 23	29.20	Sep 23	1969
39	Jul 15			
3.60		13.55		
1190		9160		
192		156		
58				

LOCATION.--Lat $30^{\circ} 25^{\prime} 35^{\prime \prime}$, long $84^{\circ} 55^{\prime} 40^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{sec} .3$, T. 1 S., R. 7 W., Liberty County, Hydrologic Unit 03120003 , near left bank at downstream side of bridge on State Highway 20, 600 ft upstream from White Branch, 3.0 mi east of Bristol, and 33 mi upstream from mouth.
DRAINGAGE AREA.-- $126 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--March 1950 to September 1971, October 1974 to September 1979, October 1980 to current year.
REVISED RECORDS.--WSP 1504: 1950-51, 1953 (M), 1955-56.
GAGE.--Water-stage recorder. Datum of gage is 99.50 ft above National Geodetic Vertical Datum of 1929 (Florida Department of Transportation bench mark).
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	66	78	70	82	103	118	127	71	24	46	85	29
2	61	173	69	82	91	93	96	61	24	40	123	36
3	56	208	70	81	83	83	79	55	24	37	128	39
4	56	169	70	80	79	77	73	51	23	36	141	40
5	60	116	69	81	76	73	67	47	23	33	154	44
6	56	98	71	82	74	70	63	45	25	29	103	52
7	54	90	71	79	72	68	58	43	24	27	70	87
8	57	86	72	76	72	65	56	40	24	25	59	132
9	71	82	72	75	71	64	53	39	23	24	51	114
10	206	79	72	91	69	62	52	37	22	23	56	69
11	497	77	71	121	69	61	50	36	22	23	49	54
12	432	76	70	118	68	62	49	35	22	26	45	47
13	277	75	81	97	67	74	48	34	22	59	41	42
14	148	74	118	96	112	74	49	32	24	108	37	39
15	119	73	125	96	189	67	48	31	25	91	35	41
16	103	71	100	86	266	95	47	30	26	53	33	37
17	93	70	86	81	139	205	46	30	26	43	31	34
18	84	70	80	78	104	292	44	29	28	37	30	36
19	79	70	94	78	96	179	42	29	28	34	30	39
20	76	69	109	77	95	139	40	29	31	32	31	39
21	75	70	127	77	86	140	39	28	27	30	33	38
22	76	70	187	74	81	105	37	28	25	29	38	177
23	74	71	225	73	76	83	36	28	25	29	37	430
24	72	72	168	92	73	72	58	28	27	31	36	671
25	69	76	122	129	71	66	184	27	40	46	34	352
26	68	88	103	123	69	69	530	26	41	116	36	158
27	65	87	95	99	91	124	313	26	49	102	33	119
28	64	82	91	88	157	133	110	26	39	69	34	102
29	63	77	87	87	167	101	95	25	45	51	32	90
30	62	73	84	89	---	89	90	24	51	44	30	81
31	61	---	82	101	---	124	---	24	---	50	28	---
MEAN	110	89.0	97.1	89.3	98.8	101	89.3	35.3	28.6	45.9	54.9	109
MAX	497	208	225	129	266	292	530	71	51	116	154	671
MIN	54	69	69	73	67	61	36	24	22	23	28	29
IN.	1.00	. 79	. 89	. 82	. 85	. 92	. 79	. 32	. 25	. 42	. 50	. 96

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1950-2000, BY WATER YEAR (WY)

MEAN	180	163	200	262	301	330	235	162	169	209	213	212
MAX	867	642	749	766	812	1100	615	788	605	510	726	1268
(WY)	1995	1998	1965	1991	1986	1991	1958	1991	1965	1956	1994	1969
MIN	35.4	46.9	69.3	71.1	81.6	45.1	61.0	35.3	28.6	45.9	47.0	38.4
(WY)	1955	1991	1991	1989	1957	1955	1999	2000	2000	2000	1954	1954

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

108		
947	Jan	25
37	Jun	7
41	Jun	3

FOR 2000 WATER YEAR

78.9		
671	Sep	24
22	Jun	10
23	Jun	7
744	Sep	24
6.39	Sep	24
21	Jun	12
8.52		
127		
70		
28		

WATER YEARS 1950 - 2000

219			
478			1965
78.9		2000	
16600		Sep 22	1969
22	Jun 10 2000		
23	Jun	7	2000
20600	Sep 22	1969	
16.65	Sep 22	1969	
21	Jun 12	2000	
23.62			
434			
130			
61			

LOCATION.--Lat $30^{\circ} 10^{\prime} 35^{\prime \prime}$, long $84^{\circ} 40^{\prime} 05^{\prime \prime}$, in $\mathrm{NE} \frac{1}{4}$ sec. 31 , T. 3 S., R. 4 W., Wakulla County, Hydrologic Unit 03120002, at bridge on County Road 368 and Forest Road FH-13, 1.3 mi upstream from Smith Creek, 2.0 mi southwest of community of Smith Creek, and 39 mi upstream from mouth. DRAINAGE AREA.--2,080 mi ${ }^{2}$.
PERIOD OF RECORD.--November 1964 to November 1992 (annual peak stage); October 1996 to current year.
GAGE.--Water-stage recorder. Datum of gage is undetermined. Prior to Nov. 29, 1972, crest-stage gage at NGVD of 1929.
EXTREMES FOR PERIOD OF RECORD.--Maximum gage-height, 29.75 ft above NGVD of 1929, Sept. 25, 1969, discharge not determined.
REMARKS.--Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	389	328	328	425	803	1380	1760	1290	227	208	195	160
2	373	720	322	397	814	1380	1730	1030	224	209	223	158
3	354	945	317	399	915	1260	1740	805	199	210	294	174
4	335	1100	315	407	888	1130	1760	685	166	204	339	218
5	323	1260	313	408	805	991	1700	505	153	195	378	284
6	313	1270	317	549	758	903	1530	366	147	184	409	496
7	308	1050	316	705	713	885	1400	328	144	170	400	948
8	305	859	316	646	680	844	1250	313	142	162	358	1430
9	307	596	318	478	653	809	993	302	140	157	336	1630
10	312	450	319	403	511	711	790	294	138	144	317	1610
11	382	402	319	404	400	651	700	288	136	137	302	1370
12	627	380	317	413	370	638	667	282	136	e135	320	1130
13	768	374	329	421	355	642	652	277	133	e160	312	982
14	988	362	339	425	359	651	641	273	131	e185	292	897
15	1190	352	349	639	551	626	632	268	136	e195	272	846
16	1310	344	366	835	962	642	626	263	137	e190	246	815
17	1130	335	377	754	1200	900	605	260	135	e185	199	913
18	775	328	381	618	1170	1400	457	257	145	174	166	1280
19	497	324	383	450	1090	1690	360	255	170	155	156	1100
20	402	320	371	390	959	1850	333	251	163	138	157	e800
21	373	317	383	369	878	1930	321	244	148	141	164	e450
22	350	319	582	358	816	1940	312	243	143	128	170	e1500
23	334	318	812	357	802	1890	304	246	146	128	179	e2500
24	324	317	990	431	848	1730	302	243	144	129	175	e3300
25	316	319	1060	591	870	1600	312	241	152	135	166	e2200
26	311	321	1020	728	883	1520	376	238	153	172	161	e1300
27	306	323	936	794	904	1580	928	237	151	254	163	e1650
28	302	329	845	943	1090	1780	1530	236	159	294	182	e1200
29	298	333	756	1070	1320	1850	1780	235	174	256	182	e800
30	295	333	655	1050	--	1900	1580	232	199	256	171	e1000
31	292	---	498	896	---	1870	---	229	---	223	164	---
MEAN	480	511	492	573	806	1277	936	362	156	181	243	1105
MAX	1310	1270	1060	1070	1320	1940	1780	1290	227	294	409	3300
MIN	292	317	313	357	355	626	302	229	131	128	156	158
CFSM	. 23	. 25	. 24	. 28	. 39	. 61	. 45	. 17	. 07	. 09	. 12	. 53
IN.	. 27	. 27	. 27	. 32	. 42	. 71	. 50	. 20	. 08	. 10	. 13	. 59

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996-2000, BY WATER YEAR (WY)

MEAN	2309	1609	1728	1905	2606	3804	1234	834	584	1012	782
MAX	5932	4505	3954	3655	4510	10090	1879	1956	1484	2024	1361
(WY)	1999	1998	1998	1998	1998	1998	1998	1997	1997	1999	1997
MIN	480	511	492	573	806	1277	614	362	1998		
(WY)	2000	2000	2000	2000	2000	2000	1999	2000	2000	2000	200

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (CFSM)
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

934		
2890	Jan	26
277	Jun	9
296	Jun	5
.45		
6.10		
1870		
710		
317		

FOR 2000 WATER YEAR

591	
e3300	Sep 24
128	Jul 22
135	Jun 11
e3300	Sep 24
125	Jul 22
.28	
3.87	
1310	
368	
160	

WATER YEARS 1996 - 2000

1624		
2798		1998
591		2000
31800	Oct	2
128	Jul 22	2000
135	Jun 11	2000
33000	Oct	2
1998		
18.30	Oct	2
195	Jul 22	2000
.78		
10.61		
3550		
956		
277		

[^4]LOCATION.--Lat $30^{\circ} 02^{\prime} 19^{\prime \prime}$, long $84^{\circ} 50^{\prime} 38^{\prime \prime}$, in SE ${ }^{1} / 4$ sec. 16 , T. 5 S., R. 6 W., Liberty County, Hydrologic Unit 03130013 , on left bank 1,000 ft downstream from closed Owens bridge and dead ends of Forest Road 125 at river, 1.8 mi downstream from Cat Branch, 4.6 mi west of Tate Fire Tower, and 8.2 mi east of Sumatra.
DRAINAGE AREA.--157 mi^{2}.
PERIOD OF RECORD.-November 1964 to October 1986 (annual maximum discharge and gage-height), December 1996 to current year. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929; from USGS Benchmark "TT 24 S"; elevation, 25.587 ft above NGVD of 1929.
REMARKS.--No estimated daily discharges. Records good.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $6,670 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 23, 1969, gage height 27.38 ft .
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	473	51	5.0	42	182	5.3	137	. 02	. 00	. 38	3.0	5.7
2	378	308	4.1	37	174	6.9	153	. 00	. 00	. 11	3.1	8.1
3	263	481	3.7	31	160	7.2	156	. 00	. 00	. 03	15	16
4	171	606	3.3	28	144	7.1	150	. 00	. 00	. 01	30	76
5	158	645	3.0	27	126	6.0	135	. 00	. 00	. 00	86	126
6	132	620	3.5	21	109	5.0	116	. 00	. 00	. 00	139	160
7	111	568	3.7	19	95	4.2	98	. 00	. 00	. 00	178	210
8	91	505	3.4	16	82	3.6	80	. 00	. 00	. 00	187	227
9	80	436	3.1	15	70	3.2	61	. 00	. 00	. 00	166	225
10	81	364	3.0	21	60	3.0	45	. 00	. 00	. 00	169	228
11	131	290	2.9	37	52	3.0	32	. 00	. 00	. 00	145	238
12	210	229	2.8	39	45	3.4	22	. 00	. 00	. 00	132	240
13	320	186	9.0	49	37	3.2	15	. 00	. 00	. 00	149	226
14	407	154	13	65	47	2.8	9.9	. 00	. 00	. 48	171	198
15	437	126	7.8	57	55	2.6	6.8	. 00	. 00	1.0	203	163
16	433	101	6.2	61	46	5.4	4.5	. 00	. 00	. 78	216	128
17	399	80	6.2	61	41	34	2.9	. 00	. 00	. 53	197	98
18	343	63	6.2	55	37	33	2.2	. 00	. 00	. 27	162	105
19	273	50	6.9	49	32	65	1.8	. 00	. 00	. 13	124	89
20	203	39	6.5	42	25	125	1.5	. 00	. 00	. 02	104	62
21	152	30	24	32	19	135	1.3	. 00	. 00	. 06	115	74
22	118	25	62	26	15	155	. 96	. 00	. 00	. 08	96	688
23	90	21	60	35	12	165	. 73	. 00	. 00	. 27	70	1870
24	65	17	79	139	9.3	155	. 75	. 00	. 00	. 64	58	2380
25	46	15	95	170	7.4	135	. 63	. 00	. 00	. 74	56	2440
26	32	12	95	179	6.0	115	. 37	. 00	. 08	. 96	89	2260
27	23	10	86	202	5.4	109	. 25	. 00	. 31	1.0	60	1950
28	17	8.4	73	206	6.2	101	. 29	. 00	. 46	1.0	32	1620
29	12	7.1	62	203	5.2	96	. 12	. 00	. 85	1.1	19	1310
30	8.6	6.1	53	194	---	123	. 05	. 00	. 71	2.5	13	1050
31	6.1	---	46	190	---	128	---	. 00	---	3.1	8.0	--
MEAN	183	202	27.0	75.7	58.8	56.3	41.2	. 001	. 080	. 49	103	616
MAX	473	645	95	206	182	165	156	. 02	. 85	3.1	216	2440
MIN	6.1	6.1	2.8	15	5.2	2.6	. 05	. 00	. 00	. 00	3.0	5.7
IN.	1.34	1.43	. 20	. 56	. 40	. 41	. 29	. 00	. 00	. 00	. 76	4.38

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997-2000, BY WATER YEAR (WY)

MEAN	524	106	20.7	114	89.2	108	25.2	165	70.4	208	314
MAX	865	202	27.0	152	121	159	41.2	359	121	503	671
(WY)	1999	2000	2000	1999	1999	1999	2000	1997	1997	1999	1997
MIN	183	9.72	14.3	75.7	58.8	56.3	9.19	.001	.080	.49	103
(WY)	2000	1999	1999	2000	2000	2000	1999	2000	2000	2000	2000

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
hIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
instantaneous peak stage
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

155			
675		Jul	16
.00	Sep	18	
.19	Apr	21	

FOR 2000 WATER YEAR

113	
2440	Sep 25
. 00	May
. 00	May
2480	Sep 24
23.46	Sep 24
. 00	Apr 29
9.78	
219	
24	
. 00	

WATER YEARS 1997 - 2000

154			
196			1999
113			2000
2570		Oct	3
.00	Jun	1998	1998
.00	Jun 12	1998	
2600	Oct	3	1998
23.63	Oct	3	1998
.00	Sep 11	1997	
13.36			
590			
77			
.24			

02357150 SPRING CREEK NEAR REYNOLDSVILLE, GA

LOCATION.--Lat $30^{\circ} 54^{\prime} 14^{\prime \prime}$, long $84^{\circ} 44^{\prime} 57^{\prime \prime}$, Decatur County, Hydrologic Unit 03130010, on right bank, 1 mi upstream of Smith Landing, and 3 mi northnortheast of Reynoldsville.
DRAINAGE AREA.--Not determined.
PERIOD OF RECORD.--October 1998 to current year.
GAGE.--Water-stage and velocity recorder.
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	159	161	187	228	336	414	507	279	140	110	109	114
2	159	150	191	228	313	409	495	272	133	129	116	116
3	158	152	196	224	320	406	492	264	132	116	105	117
4	160	155	192	221	314	398	473	264	133	111	116	116
5	155	160	181	198	318	396	441	264	132	104	109	116
6	160	167	177	202	324	383	454	254	129	96	121	120
7	161	173	177	211	307	370	458	252	125	100	120	115
8	160	170	174	227	299	366	433	247	126	106	117	112
9	163	168	174	231	298	359	411	237	126	106	98	115
10	168	158	175	234	298	363	383	226	129	108	105	115
11	162	161	176	223	295	371	366	220	125	127	94	110
12	160	157	180	225	298	374	359	214	117	137	83	60
13	165	156	182	229	299	380	353	205	125	138	90	45
14	163	159	180	222	533	387	346	198	132	137	87	83
15	156	154	180	227	493	403	328	193	126	157	81	120
16	149	153	179	231	466	432	331	190	121	168	82	110
17	155	153	180	239	485	468	332	188	115	163	100	110
18	158	154	180	233	498	476	323	188	112	143	90	120
19	158	151	183	230	510	477	307	179	117	123	76	125
20	154	156	180	226	492	491	305	175	110	107	81	132
21	140	157	188	225	474	507	301	172	110	119	74	131
22	142	158	177	225	462	508	293	173	113	117	59	141
23	149	158	193	232	450	490	286	167	104	133	63	126
24	154	161	218	235	432	493	299	162	109	120	66	122
25	157	162	219	235	417	522	295	164	107	112	99	141
26	154	160	238	247	410	502	285	159	113	111	111	115
27	153	165	253	277	415	477	295	152	122	116	115	117
28	155	174	236	310	405	471	304	149	119	118	117	111
29	151	177	227	344	409	479	297	153	120	110	104	118
30	146	180	222	382	---	497	286	147	113	108	114	122
31	152	---	219	369	---	502	---	149	-	105	109	---
MEAN	156	161	194	244	392	438	361	202	121	121	97.1	114
MAX	168	180	253	382	533	522	507	279	140	168	121	141
MIN	140	150	174	198	295	359	285	147	104	96	59	45

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

MEAN	786	389	346	512	626	550	399	233	156	316
MAX	1417	618	498	780	868	663	436	265	193	156
(WY)	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999
MIN	156	161	194	244	392	438	361	202	1999	1999
(WY)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1999-2000
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWETT DAILY MEAN
ANNAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
10 PERCENT EXCEEDS
50 PERCENT EXEEDS
90 PERCENT EXCEEDS

390		
1470	Jan 28	
140	Oct 21	
150	Oct 21	
746		
280		
158		

216			
533	Feb	14	
45	Sep	13	
73	Aug	18	
650	Feb	14	
78.13	Apr	3	
416			
167			
109			

388				
561			1999	
216			2000	
4260		Oct	3	1998
45		Sep	13	2000
73		Aug	18	2000
4470	Oct	3	1998	
81.82		Oct	3	1998
715				
283				
117				

LOCATION.--Lat $30^{\circ} 42^{\prime} 03^{\prime \prime}$, long $84^{\circ} 51^{\prime} 33^{\prime \prime}$, in NW $1 / 4$ sec. 32 , T. 4 N., R. 6 W., Jackson County, Hydrologic Unit 03130011, on downstream side of abandoned bridge downstream of U.S. Highway 90, 0.6 mi downstream from Jim Woodruff Dam, 0.6 mi upstream from Mosquito Creek, 1.0 mi west of Chattahoochee, and 106 mi upstream from mouth.
DRAINAGE AREA.-- $17,200 \mathrm{mi}^{2}$, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1928 to current year. Monthly discharge only for some periods, published in WSP 1304. Prior to October 1939, published as "near River Junction." Gage-height records collected at site 0.9 mi downstream October 1919 to September 1925, and at site approximately 100 ft downstream October 1925 to December 1958 are contained in reports of National Weather Service.
REVISED RECORDS.--WSP 1906: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (National Weather Service bench mark). Prior to Dec. 16, 1939, waterstage recorder at site 0.9 mi downstream at datum 44.85 ft higher. Dec. 16, 1939 to June 25, 1952, water-stage recorder, June 26, 1952 to June 2, 1954 , nonrecording gage, and June 3, 1954 to Oct. 14, 1958, water-stage recorder, at site approximately 100 ft downstream at datum 45.58 ft . Oct. 15 , 1958 to Sept. 30, 1987, water-stage recorder at datum 40.58 ft .
REMARKS.--No estimated daily discharges. Records good. Flow regulated by Lake Seminole Reservoir (02357500) 0.6 mi upstream since Feb. 4, 1957, Walter F. George Lake (02343240) since 1962, Bartlett's Ferry Reservoir (02341000) since 1926, West Point Lake (02339400) since October 1974, and Lake Sidney Lanier Reservoir (02334400) since 1956.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6120	5730	10200	9400	18500	8550	18700	18400	5230	4590	5540	5900
2	6140	6150	10600	8370	16500	8420	21700	18300	5220	4530	5620	5880
3	6050	6040	11800	7390	16400	8310	28600	18200	5190	4570	5680	5880
4	5850	5960	8830	7300	16700	8310	32200	18100	5190	4570	5820	5920
5	5560	5950	5440	7300	16400	8280	34300	17000	5070	4690	5800	5790
6	5570	6040	5280	9220	15500	8260	35100	14000	4920	4670	5720	5770
7	5310	6050	5360	10600	14900	8290	29800	12100	4790	4710	6020	5920
8	5430	6070	5980	9950	15500	9030	22500	9910	4780	4700	6780	5950
9	5470	6030	6260	7610	18200	9770	15800	8120	4850	4700	5890	5920
10	5680	6060	6250	6190	19400	9990	10200	6860	4790	4680	5810	5900
11	6190	6030	6240	6150	19600	9980	9660	6100	4730	4710	5690	5770
12	5910	5960	6250	6280	20500	9780	9910	6070	4630	5150	5670	5990
13	5640	6080	6250	7220	20500	9830	10800	5940	4580	5280	5680	6040
14	5590	6520	6340	10200	20600	9870	11400	5820	5140	5340	5770	6010
15	5500	6010	6320	11100	20300	10100	11600	5850	5260	5320	5810	5950
16	5560	5860	6250	11300	19800	12500	9750	5800	4850	5290	5800	5830
17	5570	5880	6270	11300	19800	17800	9850	5790	4770	5290	5860	5660
18	5630	6340	6300	11300	20100	16100	9470	5790	4800	5340	5880	5840
19	5700	6380	6400	11200	20000	14700	9670	5750	4800	5370	5780	5990
20	5570	6420	6430	11300	19700	15300	11200	5730	4730	5370	5780	5880
21	5590	6380	6490	11200	20200	19100	11600	5770	4700	5340	5690	5810
22	5660	6360	6600	10700	19300	22800	12200	5770	4540	5270	5730	6110
23	5640	6280	8060	9660	16700	25400	13000	5830	4640	5290	5820	6260
24	5700	6350	9300	12000	12700	25500	18700	5830	4700	5250	5750	6180
25	5900	6410	9220	14900	9750	25600	19300	5620	4700	5230	5600	5920
26	6040	6400	9340	17000	9660	23100	18700	5410	4690	5400	5670	5670
27	6070	6440	9300	20500	8830	20300	18500	5520	4680	5540	5680	5700
28	5890	6370	9350	20400	8280	20100	18600	5530	4580	5630	5840	5690
29	5650	6380	9280	20500	8460	19800	18600	5400	4550	5620	5950	5730
30	5690	8440	9400	20300	---	19000	18500	5280	4670	5640	5940	5800
31	5670		9460	20100	---	17900		5210		5540	5930	
MEAN	5727	6246	7576	11550	16650	14570	17330	8413	4826	5117	5806	5889
MAX	6190	8440	11800	20500	20600	25600	35100	18400	5260	5640	6780	6260
MIN	5310	5730	5280	6150	8280	8260	9470	5210	4540	4530	5540	5660
MED	5660	6120	6430	10700	18200	12500	17200	5830	4780	5280	5780	5890
IN.	. 38	. 41	. 51	. 77	1.04	. 98	1.12	. 56	. 31	. 34	. 39	. 38

APALACHICOLA RIVER BASIN
02358000 APALACHICOLA RIVER AT CHATTAHOOCHEE, FL--Continued
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	40.11	39.85	42.51	42.07	45.74	41.05	46.02	46.33	39.51	39.07	39.46	39.67
2	40.12	40.13	42.72	41.48	44.81	40.98	47.37	46.33	39.50	39.02	39.51	39.66
3	40.06	40.06	43.35	40.90	44.77	40.93	50.29	46.28	39.49	39.05	39.54	39.66
4	39.93	40.00	41.68	40.85	44.88	40.93	51.70	46.27	39.49	39.05	39.62	39.68
5	39.74	39.99	39.66	40.85	44.77	40.91	52.51	45.79	39.40	39.13	39.61	39.61
6	39.75	40.06	39.55	41.96	44.30	40.90	52.81	44.38	39.30	39.12	39.56	39.60
7	39.57	40.06	39.60	42.75	43.99	40.92	50.80	43.42	39.21	39.15	39.73	39.67
8	39.65	40.07	40.01	42.38	44.29	41.28	47.84	42.31	39.20	39.14	40.14	39.69
9	39.68	40.05	40.20	41.02	45.64	41.63	44.74	41.31	39.25	39.14	39.66	39.68
10	39.82	40.07	40.19	40.15	46.19	41.73	42.09	40.57	39.21	39.13	39.62	39.67
11	40.15	40.05	40.19	40.12	46.27	41.73	41.82	40.09	39.16	39.11	39.55	39.59
12	39.97	40.00	40.19	40.21	46.68	41.64	41.95	40.07	39.09	39.29	39.54	39.71
13	39.79	40.08	40.19	40.79	46.71	41.66	42.43	39.99	39.06	39.31	39.54	39.74
14	39.76	40.36	40.25	42.48	46.72	41.68	42.71	39.91	39.44	39.35	39.59	39.73
15	39.70	40.03	40.24	43.01	46.61	41.77	42.79	39.93	39.53	39.34	39.61	39.69
16	39.74	39.94	40.19	43.08	46.38	42.89	41.93	39.90	39.25	39.32	39.61	39.63
17	39.74	39.95	40.21	43.10	46.39	45.43	41.98	39.89	39.20	39.32	39.64	39.53
18	39.78	40.25	40.22	43.12	46.52	44.59	41.81	39.89	39.21	39.35	39.65	39.63
19	39.83	40.27	40.29	43.04	46.48	43.89	41.92	39.86	39.21	39.36	39.60	39.72
20	39.75	40.30	40.31	43.10	46.31	44.21	42.68	39.85	39.16	39.37	39.60	39.66
21	39.76	40.27	40.35	43.02	46.56	46.06	42.90	39.88	39.14	39.35	39.55	39.62
22	39.80	40.26	40.42	42.76	46.15	47.74	43.22	39.88	39.03	39.31	39.57	39.78
23	39.79	40.21	41.29	42.22	44.90	48.85	43.62	39.92	39.10	39.32	39.62	39.87
24	39.83	40.26	42.02	42.98	42.96	48.90	46.37	39.92	39.15	39.30	39.58	39.82
25	39.97	40.29	41.97	44.02	41.62	48.97	46.66	39.78	39.15	39.29	39.50	39.68
26	40.06	40.29	42.04	45.03	41.58	47.89	46.42	39.64	39.14	39.38	39.54	39.53
27	40.07	40.31	42.01	46.68	41.18	46.70	46.33	39.71	39.13	39.46	39.54	39.55
28	39.96	40.27	42.04	46.65	40.91	46.59	46.39	39.72	39.06	39.51	39.63	39.55
29	39.80	40.28	42.01	46.69	41.00	46.48	46.41	39.63	39.03	39.51	39.70	39.57
30	39.82	41.50	42.07	46.60	---	46.12	46.38	39.55	39.12	39.52	39.69	39.61
31	39.81		42.11	46.51	---	45.65	---	39.50	---	39.46	39.68	---
MEAN	39.85	40.18	40.97	42.89	44.87	43.89	45.43	41.27	39.23	39.28	39.61	39.66
MAX	40.15	41.50	43.35	46.69	46.72	48.97	52.81	46.33	39.53	39.52	40.14	39.87
MIN	39.57	39.85	39.55	40.12	40.91	40.90	41.81	39.50	39.03	39.02	39.46	39.53

WATER-QUALITY RECORDS
PERIOD OF RECORD.--November 1962 to June 1972, January 1974 to current year.

SUSPENDED SEDIMENT DISHCARGE

WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	SED. SUSP. SIEVE DIAM. $\%$ FINER THAN .062 MM (70331)	$\begin{aligned} & \text { SEDI- } \\ & \text { MENT, } \\ & \text { SUS- } \\ & \text { PENDED } \\ & \text { (MG/L) } \\ & (80154) \end{aligned}$	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)
OCT						
12.	1340	910	40.11	80	10	6140
12.	1343	910	40.12	86	6	6140
12.	1346	1060	40.12	79	8	6140
12.	1348	1060	40.12	79	8	6140
12.	1351	1150	40.13	91	6	6140
12.	1353	1150	40.13	76	11	6140
12.	1356	1200	40.14	76	13	6170
12.	1358	1200	40.14	79	11	6170
12.	1401	1270	40.14	77	13	6170
12.	1404	1270	40.14	70	15	6170
NOV						
17.	1415	905	40.30	67	9	6390
17.	1417	905	40.28	100	3	6390
17.	1420	1060	40.27	100	4	6390
17.	1422	1060	40.26	100	4	6390
17.	1425	1150	40.25	100	5	6330
17.	1427	1150	40.25	100	5	6330
17.	1430	1200	40.24	100	5	6330
17.	1432	1200	40.18	100	6	6330
17.	1435	1270	40.16	97	8	6330
17.	1438	1270	40.05	86	9	6330
JAN						
24.	1210	875	42.91	83	14	12600
24	1212	875	42.92	84	14	12600
24.	1215	1040	42.94	87	13	12600
24	1217	1040	42.95	74	18	12600
24	1220	1140	42.96	71	19	12600
24.	1223	1140	42.97	73	17	13000
24.	1226	1200	42.98	73	18	13000
24	1228	1200	42.98	69	20	13000
24	1230	1280	42.99	74	16	13000
24.	1232	1280	43.00	76	13	13000
MAR						
21.	1130	865	45.71	85	13	10300
21.	1133	865	45.71	86	14	10300
21.	1135	1020	45.71	86	10	10300
21.	1137	1020	45.71	93	8	10300
21.	1139	1140	45.70	96	7	10300
21.	1142	1140	45.70	100	7	10300
21.	1144	1200	45.70	94	9	10300
21.	1146	1200	45.70	100	7	10300
21.	1149	1290	45.70	100	8	10300
21.	1152	1290	45.70	89	9	10300
JUN						
15.	1435	910	39.49	93	8	5200
15.	1442	1070	39.49	96	7	5200
15.	1445	1150	39.49	87	7	5200
15.	1447	1150	39.49	88	8	5200
15.	1450	1200	39.49	100	4	5200
15.	1452	1260	39.50	100	3	5210
15.	1455	1260	39.50	100	5	5210
AUG						
02.	1430	910	39.69	77	8	5940
02.	1432	910	39.69	73	10	5940
02.	1435	1060	39.69	86	6	5940
02.	1438	1060	39.69	79	7	5940
02.	1441	1150	39.69	90	5	5960
02.	1443	1150	39.70	86	6	5960
02...	1446	1200	39.70	90	5	5960
02...	1449	1200	39.70	96	6	5960
02...	1452	1260	39.70	100	4	5960
02...	1454	1260	39.70	100	4	5960

02358700 APALACHICOLA RIVER NEAR BLOUNTSTOWN, FL

LOCATION.--Lat $30^{\circ} 25^{\prime} 30^{\prime \prime}$, long $85^{\circ} 01^{\prime} 53^{\prime \prime}$, in NE $1 / 4$ sec.3, T. 1 S., R. 8 W., Calhoun County, Hydrologic Unit 03130011 , on right bank 500 ft upstream from Neal Lumber Company Landing at McNeal, 0.5 mi upstream from Old River cutoff, 1.5 mi southeast of Blountstown, and 78 mi upstream from mouth.
DRAINAGE AREA.-- $17,600 \mathrm{mi}^{2}$, approximately.
PERIOD OF RECORD.--January 1920 to September 1957 gage-height records collected in this vicinity by the National Weather Service are in the files of the Geological Survey. Miscellaneous discharge measurements from some periods August 1938 to August 1957 are in files of the U.S. Army Corps of Engineers, Mobile, Alabama District. October 1957 to current year.
GAGE.--Water-stage recorder. Datum of gage is 26.96 ft above National Geodetic Vertical Datum of 1929 (National Weather Service benchmark). Prior to Sept. 17, 1921, nonrecording gage near present site at different datum. Sept. 17, 1921 to Aug. 28, 1957, nonrecording gage at several sites within 500 ft of present site at present datum. Since Aug. 26, 1960, auxiliary nonrecording gage at site 2.2 mi upstream at bridge on State Highway 20, at present datum.
COOPERATION.--Records from October 1957 to current year, were collected and computed by the U.S. Army Corps of Engineers and were reviewed by the Geological Survey.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, $266,000 \mathrm{ft}^{3} / \mathrm{s}$, Mar. 13, 1998; maximum gage height, 27.23 ft , Mar. 13 , 1998; minimum daily discharge, 4,680 $\mathrm{ft}^{3} / \mathrm{s}$ (estimated), Aug. 3, 1986.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1920, 28.6 ft present datum, Mar. 21, 1929, discharge not determined, from National Weather Service records.
EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, $39,700 \mathrm{ft}^{3} / \mathrm{s}$, Apr. 6 , gage height, 14.47 ft ; minimum daily, $5,190 \mathrm{ft}^{3} / \mathrm{s}$, July 3 .
MAIN CHANNEL ONLY
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6910	6400	9760	10500	21800	10100	20400	19500	5580	5310	5490	5540
2	6890	6980	10300	10300	19000	10100	22200	19400	5570	5210	5530	5590
3	6850	6980	11500	8950	18200	9930	34800	19200	5560	5190	5570	5580
4	6800	6760	11200	8670	18200	9880	34500	19100	5550	5220	5620	5550
5	6610	6650	7490	8710	18100	9830	37100	18700	5570	5210	5610	5550
6	6450	6670	6170	9430	17600	9800	39700	16100	5570	5270	5550	5550
7	6330	6690	5870	11600	16400	9760	36800	13700	5480	5240	5510	5670
8	6300	6690	6260	12000	16200	9900	28800	11500	5480	5230	6000	5690
9	6400	6680	6470	10500	18700	10700	13200	9680	5490	5240	5810	5620
10	6780	6680	6550	8360	21000	11100	13200	8140	5550	5260	5660	5580
11	8240	6680	6570	7900	21400	11100	13100	7110	5550	5230	5570	5540
12	7770	6650	6590	7860	22300	11200	13100	6700	5550	5400	5530	5490
13	7090	6640	6680	8260	22700	11200	13000	6520	5500	5550	5490	5540
14	6760	6650	6860	10300	23000	11200	13000	6350	5660	5570	5480	5550
15	6590	6490	6860	12800	23100	11200	13000	6250	6220	5540	5530	5520
16	6530	6510	6840	13300	22300	12000	11300	6210	5630	5440	5540	5480
17	6500	6000	6850	13400	22200	18300	10700	6100	5450	5420	5550	5440
18	6400	6620	6910	13500	22200	18700	10600	6100	5440	5430	5550	5470
19	6400	6940	7150	13500	22400	16800	10300	6100	5440	5440	5560	5520
20	6410	6980	7220	13600	22300	16300	11100	6050	5370	5440	5550	5530
21	6390	6990	7330	13600	22300	19200	11800	6040	5330	5440	5560	5500
22	6350	6990	7650	13500	22400	23700	12500	6060	5300	5430	5570	5740
23	6330	6950	7980	12500	20200	27700	12800	6030	5240	5410	5550	5980
24	6330	6950	9680	12600	16300	28600	17300	6020	5340	5420	5580	5880
25	6390	6990	10100	15300	12500	28800	20900	5970	5370	5440	5530	5680
26	6520	6990	10200	16700	11300	27900	20400	5760	5370	5450	5520	5580
27	6560	6980	10200	21200	11100	24300	19900	5700	5370	5480	5510	5550
28	6560	6940	10300	22500	10400	22900	19800	5680	5320	5490	5540	5520
29	6330	6860	10400	22600	10100	22400	19800	5650	5280	5520	5540	5510
30	6280	7380	10500	22600	---	22000	19700	5610	5330	5540	5530	5510
31	6270	---	10500	22500	---	20500	---	5590	---	5510	5530	---
MEAN	6623	6779	8224	13190	18820	16360	19160	9117	5482	5386	5570	5582
MAX	8240	7380	11500	22600	23100	28800	39700	19500	6220	5570	6000	5980
MIN	6270	6000	5870	7860	10100	9760	10300	5590	5240	5190	5480	5440
IN.	. 43	. 43	. 54	. 86	1.15	1.07	1.21	. 60	. 35	. 35	. 36	. 35

CAL YR 1999 MEAN 12030 MAX 33800 MIN 5870 IN. 9.28
WTR YR 2000 MEAN 9985 MAX 39700 MIN 5190 IN. 7. 72

02358700 APALACHICOLA RIVER NEAR BLOUNTSTOWN, FL--Continued
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.54	1.13	3.80	3.48	8.27	2.46	7.97	8.46	. 63	. 31	. 53	. 58
2	1.52	1.60	4.16	3.28	7.08	2.46	8.77	8.43	. 62	. 19	. 57	. 64
3	1.49	1.60	4.86	2.39	6.72	2.35	13.17	8.39	. 61	. 17	. 62	. 63
4	1.45	1.43	4.70	2.17	6.70	2.32	13.10	8.36	. 60	. 20	. 68	. 60
5	1.29	1.35	2.28	2.16	6.66	2.30	13.83	8.21	. 62	. 19	. 67	. 60
6	1.16	1.37	1.23	2.61	6.43	2.28	14.47	7.03	. 62	. 26	. 59	. 59
7	1.06	1.40	. 93	3.89	5.86	2.25	13.79	5.82	. 51	. 23	. 55	. 74
8	1.03	1.41	1.24	4.10	5.76	2.34	11.45	4.66	. 51	. 22	1.09	. 76
9	1.12	1.41	1.39	3.19	6.93	2.82	4.78	3.55	. 53	. 23	. 90	. 68
10	1.43	1.42	1.42	1.76	7.94	3.06	4.78	2.53	. 59	. 25	. 72	. 63
11	2.52	1.43	1.40	1.39	8.10	3.10	4.78	1.81	. 60	. 22	. 62	. 58
12	2.19	1.41	1.39	1.33	8.49	3.15	4.78	1.51	. 59	. 42	. 57	. 52
13	1.68	1.41	1.43	1.59	8.63	3.13	4.78	1.39	. 54	. 59	. 52	. 58
14	1.42	1.43	1.54	2.92	8.75	3.13	4.78	1.28	. 72	. 62	. 51	. 60
15	1.28	1.30	1.51	4.33	8.79	3.15	4.81	1.22	1.28	. 58	. 57	. 56
16	1.23	1.33	1.46	4.55	8.48	3.63	3.92	1.21	. 69	. 47	. 58	. 51
17	1.20	. 91	1.43	4.59	8.45	6.80	3.57	1.14	. 48	. 44	. 60	. 46
18	1.12	1.44	1.45	4.59	8.45	6.98	3.52	1.17	. 47	. 45	. 60	. 50
19	1.12	1.71	1.61	4.60	8.51	6.12	3.39	1.17	. 46	. 46	. 61	. 56
20	1.13	1.75	1.63	4.59	8.49	5.90	3.91	1.13	. 38	. 46	. 59	. 57
21	1.11	1.77	1.67	4.56	8.51	7.23	4.34	1.12	. 34	. 47	. 61	. 54
22	1.08	1.78	1.88	4.50	8.54	9.09	4.76	1.14	. 30	. 45	. 62	. 81
23	1.06	1.76	2.09	3.89	7.61	10.58	4.95	1.11	. 23	. 43	. 60	1.07
24	1.07	1.77	3.20	3.91	5.85	10.96	7.26	1.10	. 35	. 44	. 63	. 98
25	1.12	1.81	3.44	5.33	3.88	11.05	8.88	1.06	. 38	. 47	. 57	. 75
26	1.23	1.82	3.45	5.97	3.20	10.75	8.71	. 84	. 38	. 48	. 56	. 63
27	1.26	1.82	3.46	7.98	3.07	9.44	8.50	. 77	. 38	. 51	. 55	. 60
28	1.26	1.79	3.47	8.55	2.63	8.93	8.48	. 75	. 32	. 53	. 58	. 56
29	1.07	1.74	3.48	8.60	2.48	8.73	8.52	. 71	. 28	. 56	. 58	. 55
30	1.03	2.15	3.49	8.60	---	8.60	8.51	. 66	. 34	. 58	. 57	. 55
31	1.02	---	3.50	8.54	---	7.99	---	. 64	---	. 55	. 57	---
TOTAL	40.29	46.45	73.99	133.94	199.26	173.08	221.26	88.37	15.35	12.43	19.13	18.93
MEAN	1.30	1.55	2.39	4.32	6.87	5.58	7.38	2.85	. 51	. 40	. 62	. 63
MAX	2.52	2.15	4.86	8.60	8.79	11.05	14.47	8.46	1.28	. 62	1.09	1.07
MIN	1.02	. 91	. 93	1.33	2.48	2.25	3.39	. 64	. 23	. 17	. 51	. 46

CAL YR 1999 TOTAL 1720.90 MEAN 4.71 MAX 14.15 MIN . 91 WTR YR 2000 TOTAL 1042.48 MEAN 2.85 MAX 14.47 MIN . 17

LOCATION.--Lat $30^{\circ} 49^{\prime} 58^{\prime \prime}$, long $85^{\circ} 12^{\prime} 31^{\prime \prime}$, in SW $1 / 4$ sec. 14, T. 5N., R. 10W., Jackson County, Hydrologic Unit 03130012, at downstream side of culvert at County Road 167, 1.4 mi west of Marianna Municipal Airport, 1.4 mi north of State Highway 166, 2.4 mi upstream from Chipola River, and 4.2 mi north of Marianna.
DRAINAGE AREA.-- $10.4 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1998 to September 1999, October 1999 to September 2000 (gage heights only).
GAGE.--Water-stage recorder.
REMARKS.--No estimated daily gage heights. Records good
EXTREMES FOR PERIOD OF RECORD.--Maximum dishcarge, $31 \mathrm{ft}^{3} / \mathrm{s}$, May 7, 1999, gage height, 6.70 ft ; no flow for several days in 1999 .
EXTREMES FOR CURRENT YEAR.--Maximum gage height, 6.48 ft , Feb. 14 ; minimum, 3.47 ft for several days.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.55	3.72	3.47	3.47	3.49	3.69	3.71	3.58	3.47	3.50	3.53	3.50
2	3.50	4.40	3.47	3.47	3.48	3.68	3.77	3.57	3.47	3.50	3.60	3.50
3	3.50	3.95	3.47	3.47	3.47	3.67	3.80	3.55	3.47	3.50	3.60	3.50
4	3.50	3.75	3.47	---	3.47	3.67	3.79	3.52	3.47	3.50	3.50	3.50
5	3.49	3.62	3.47	---	3.47	3.66	3.74	3.49	3.47	3.50	3.50	3.50
6	3.48	3.51	3.47	---	3.47	3.65	3.68	3.47	3.47	3.50	3.50	3.50
7	3.47	3.47	3.47	---	3.47	3.64	3.65	3.47	3.47	3.50	3.50	3.62
8	3.47	3.47	3.47	---	3.47	3.63	3.65	3.47	3.47	3.50	3.50	3.58
9	3.48	3.47	3.47	---	3.47	3.62	3.65	3.47	3.47	3.50	3.50	3.50
10	4.03	3.47	3.47	---	3.47	3.61	3.64	3.47	3.47	3.50	3.50	3.50
11	5.06	3.47	3.47	3.47	3.47	4.01	3.63	3.47	3.47	3.50	3.50	3.50
12	4.12	3.47	3.47	3.47	3.47	4.54	3.61	3.47	3.49	3.50	3.50	3.50
13	3.83	3.47	3.48	3.47	3.58	3.97	3.60	3.47	3.50	3.50	3.50	3.50
14	3.69	3.47	3.47	3.47	5.45	3.86	3.59	3.47	3.50	3.50	3.50	3.50
15	3.60	3.47	3.47	3.47	4.18	3.80	3.57	3.47	3.50	3.50	3.50	3.50
16	3.51	3.47	3.47	3.47	4.01	3.94	3.53	3.47	3.50	3.50	3.50	3.50
17	3.47	3.47	3.47	3.47	3.95	4.08	3.50	3.47	3.50	3.50	3.50	3.50
18	3.47	3.47	3.47	3.47	3.87	3.86	3.49	3.47	3.51	3.50	3.50	3.50
19	3.47	3.47	3.47	3.47	3.81	3.81	3.48	3.47	3.50	3.50	3.50	3.50
20	3.47	3.48	3.47	3.47	3.77	3.82	3.47	3.47	3.50	3.50	3.50	3.50
21	3.47	3.48	3.66	3.47	3.75	3.79	3.47	3.47	3.50	3.50	3.50	3.50
22	3.47	3.47	3.98	3.47	3.73	3.77	3.47	3.47	3.50	3.50	3.50	3.85
23	3.47	3.47	3.84	3.70	3.73	3.75	3.47	3.47	3.51	3.50	3.50	4.35
24	3.47	3.47	3.69	4.48	3.72	3.74	4.58	3.47	3.64	3.50	3.50	4.09
25	3.47	3.48	3.56	4.25	3.72	3.72	4.46	3.47	3.52	3.50	3.50	3.79
26	3.47	3.48	3.47	3.99	3.71	3.73	3.93	3.47	3.50	3.50	3.62	3.61
27	3.47	3.47	3.47	3.75	3.73	3.74	3.80	3.47	3.50	3.50	3.50	3.50
28	3.47	3.47	3.47	3.47	3.72	3.71	3.70	3.47	3.50	3.50	3.50	3.50
29	3.47	3.47	3.47	3.47	3.70	3.70	3.62	3.47	3.50	3.50	3.50	3.50
30	3.47	3.47	3.47	3.47	---	3.73	3.60	3.47	3.50	3.75	3.50	3.50
31	3.47	---	3.47	3.50	---	3.73	---	3.47	---	3.52	3.50	---
MEAN	3.59	3.54	3.51	---	3.72	3.78	3.69	3.48	3.49	3.51	3.51	3.58
MAX	5.06	4.40	3.98	---	5.45	4.54	4.58	3.58	3.64	3.75	3.62	4.35
MIN	3.47	3.47	3.47	---	3.47	3.61	3.47	3.47	3.47	3.50	3.50	3.50

CAL YR 1999 MEAN 3.85 MAX 6.24 MIN 3.47

LOCATION.--Lat $30^{\circ} 46^{\prime} 22^{\prime \prime}$, long $85^{\circ} 12^{\prime} 59^{\prime \prime}$, T.4N., R.10W, in SE $1 / 4 \mathrm{sec} .3$, Jackson County, Hydrologic Unit 03130012, at bridge on downstream side of U.S. Highway 90.
DRAINAGE AREA.--464 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1999 to September 2000.
GAGE.--Water-stage recorder.
REMARKS.--Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	250	262	245	262	395	451	699	272	149	192	147	126
2	244	423	240	270	382	447	611	260	147	183	158	128
3	236	475	236	274	370	423	581	250	145	175	171	130
4	234	413	235	277	360	413	552	243	142	166	171	133
5	264	384	234	287	351	394	513	235	142	160	175	136
6	280	336	238	290	341	379	482	228	143	155	177	143
7	256	300	242	289	334	368	455	222	143	150	167	153
8	242	283	241	282	328	357	432	217	143	145	160	154
9	237	272	241	271	324	351	404	212	144	139	156	158
10	280	265	239	281	321	343	383	207	140	136	154	157
11	391	261	239	311	317	400	368	203	137	135	153	153
12	451	256	235	343	313	628	355	199	135	142	149	147
13	396	253	247	360	357	748	342	193	138	152	146	142
14	356	249	257	356	753	806	335	192	139	159	142	137
15	320	247	253	330	765	937	339	189	138	163	136	146
16	290	243	248	305	760	1040	326	188	140	157	132	144
17	272	241	244	290	761	1030	315	185	144	151	128	148
18	261	237	239	281	832	927	305	180	155	146	125	152
19	251	235	244	279	851	894	289	177	161	143	126	147
20	247	239	256	281	669	1000	275	173	159	142	131	143
21	245	245	293	280	554	1050	264	173	153	140	128	143
22	242	242	382	272	511	943	256	174	151	149	126	167
23	237	243	424	302	490	e885	243	173	152	140	126	196
24	231	243	414	446	471	e827	604	169	161	143	124	200
25	227	245	402	558	456	769	503	164	160	142	126	209
26	223	255	356	567	448	671	432	161	163	140	128	216
27	222	275	307	569	448	651	387	157	163	138	127	208
28	220	275	286	571	470	637	347	155	169	134	129	192
29	217	263	274	505	465	634	316	155	186	132	128	179
30	213	252	266	434	---	722	288	154	192	133	128	170
31	210	---	261	409	-	779	---	151	---	140	126	---
TOTAL	8245	8412	8518	10832	14197	20904	12001	6011	4534	4622	4400	4757
MEAN	266	280	275	349	490	674	400	194	151	149	142	159
MAX	451	475	424	571	851	1050	699	272	192	192	177	216
MIN	210	235	234	262	313	343	243	151	135	132	124	126
CFSM	. 57	. 60	. 59	. 75	1.06	1.45	. 86	. 42	. 33	. 32	. 31	. 34
IN.	. 66	. 67	. 68	. 87	1.14	1.68	. 96	. 48	. 36	. 37	. 35	. 38

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2000-2000, BY WATER YEAR (WY)

MEAN	266	280	275	349	490	674	400	194	151	149	142
MAX	266	280	275	349	490	674	400	194	151	149	142
(WY)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
MIN	266	280	275	349	490	674	400	194	159		
(WY)	2000	2000	2000	2000	2000	2000	2000	2000	2000	200	142

SUMMARY STATISTICS

ANNUAL TOTAL	107433	
ANNUAL MEAN	294	
HIGHEST DAILY MEAN	1050	Mar 21
LOWEST DAILY MEAN	124	Aug 24
ANNUAL SEVEN-DAY MINIMUM	1126	Aug 21
INSTANTANEOUS PEAK FLOW	1140	Apr 24
INSTANTANEOUS PEAK STAGE	9.48	Apr 24
INSTANANEOUS LOW FLOW	120	Aug 25
ANNUAL RUNOFF (CFSM)	.63	
ANNUAL RUNOFF (INCHES)	8.61	
10 PERCENT EXCEEDS	553	
50 PERENT EXCEDS	243	
90 PERCENT EXCEEDS	140	

FOR 2000 WATER YEAR
e Estimated

LOCATION.--Lat $30^{\circ} 32^{\prime} 02^{\prime \prime}$, long $85^{\circ} 09^{\prime} 55^{\prime \prime}$, in $\mathrm{NW} / 1 / 4 \mathrm{sec} .32$, T. 2 N., R. 9 W., Calhoun County, Hydrologic Unit 03130012, on right downstream bank at State Highway 274, 0.9 mi downstream from Holliman Branch, 3.5 mi southwest of Altha, and 54 mi upstream from mouth.
DRAINAGE AREA.--781 mi ${ }^{2}$.
PERIOD OF RECORD.--November 1912 to December 1913, September 1921 to September 1927, August 1929 to September 1931, March 1943 to current year. Monthly discharge only for some periods published in WSP 1304.
REVISED RECORDS.--WSP 1384: Drainage area. WSP 1504: 1924, 1925 (M), 1926.
GAGE.--Water-stage recorder. Datum of gage is 19.95 ft above National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Jan. 13, 1950, and Mar. 13, 1978 to Mar. 20, 1979, nonrecording gage at same site and datum.
REMARKS.--Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAIL'Y MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	738	651	668	695	830	930	1280	775	444	538	476	370
2	724	926	632	692	812	1010	1120	811	437	493	491	429
3	695	1000	607	683	800	939	1070	767	429	479	514	425
4	700	920	653	688	782	948	1130	730	424	479	518	420
5	735	887	632	677	763	891	1030	722	480	463	508	429
6	779	830	637	672	749	826	937	683	460	471	508	464
7	729	747	670	672	741	841	884	610	434	450	497	530
8	667	700	647	670	734	786	925	600	424	456	478	501
9	743	698	634	666	724	865	847	676	437	423	471	489
10	838	696	623	724	718	789	817	663	446	416	468	480
11	947	686	661	713	714	876	815	616	396	445	464	469
12	1000	658	651	741	709	1040	853	599	393	448	455	502
13	947	701	735	761	716	1140	816	636	471	471	443	391
14	887	673	771	761	1580	1190	772	597	467	482	434	391
15	812	651	709	731	1860	1280	842	569	436	468	425	405
16	789	675	677	702	1650	1450	769	571	480	461	413	412
17	730	673	643	691	1490	1800	712	533	474	444	403	392
18	714	649	636	679	1430	1620	792	591	433	434	370	423
19	727	659	656	678	1490	1450	735	585	449	430	356	432
20	716	643	657	675	1360	1530	682	525	480	427	360	429
21	717	649	724	667	1130	1660	648	514	477	427	384	423
22	704	632	825	661	1020	1520	721	531	467	433	362	593
23	677	672	937	715	985	1380	674	596	483	539	356	606
24	643	702	899	870	1010	1240	864	552	e484	473	347	571
25	615	677	874	990	929	1280	1570	534	e472	509	338	557
26	652	651	832	1010	963	1150	1170	515	466	475	356	576
27	640	697	776	996	944	1160	1090	506	509	463	346	545
28	637	675	733	1000	975	1240	1020	496	523	447	347	504
29	597	662	707	973	1020	1150	994	488	531	434	349	475
30	611	682	695	899	-	1170	867	479	564	430	353	455
31	587	---	693	853	---	1280	---	461	---	449	345	---
MEAN	732	714	706	761	1022	1175	915	598	462	460	417	470
MAX	1000	1000	937	1010	1860	1800	1570	811	564	539	518	606
MIN	587	632	607	661	709	786	648	461	393	416	338	370
IN.	1.08	1.02	1.04	1.12	1.41	1.74	1.31	. 88	. 66	. 68	. 62	. 67

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1913-2000, BY WATER YEAR (WY)

MEAN	1100	973	1244	1800	2151	2400	2090	1347	1234	1285	1196
MAX	6000	2763	3617	5936	5687	5465	7200	3890	3636	5353	3273
(WY)	1927	1948	1948	1926	1926	1998	1948	1964	1989	1994	1946
MIN	379	370	394	473	671	540	757	598	462	462	
(WY)	1969	1991	1956	1956	1955	1955	1968	2000	2000	2000	2000

SUMMARY STATISTICS ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

[^5]LOCATION.--Lat $30^{\circ} 06^{\prime} 01$ ", long $85^{\circ} 10^{\prime} 533^{\prime \prime}$, $\mathrm{NE}^{1} / 4 \mathrm{sec} .30$, T. 4 S., R. 9 W., Gulf County, Hydrologic Unit 03130012 , on left bank at Cockran Landing, 2.34 mi downstream from Dead Lake, 1.45 mi southeast of Wewahitchka and 11.5 mi upstream from mouth.
DRAINAGE AREA.--1,206 mi^{2}, approximately.
PERIOD OF RECORD.-- October 1987 to current year.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers).
REMARKS.--No estimated discharges for periods of no gage height record. Records good. Discharge for main channel only and includes flow diverted from the Apalachicola River through the Chipola Cutoff.
COOPERATION.--Records from October 1987 to current year, were collected and computed by U.S. Army Corps of Engineers and were reviewed by Geological Survey.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, not determined, July 12, 1994, gage height 25.16 ft ; minimum discharge $2,460 \mathrm{ft}^{3} / \mathrm{s}$, Aug. 9 , 1988.

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of January 1978 reached a stage of 25.64 ft .
EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, $9,890 \mathrm{ft}^{3} / \mathrm{s}$, Apr. 8 , gage height, 17.43 ft ; minimum daily discharge, $3,000 \mathrm{ft}^{3} / \mathrm{s}$, June 23 .

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

e Estimated

02359051 CHIPOLA RIVER AT COCKRAN LANDING NEAR WEWAHITCHKA, FL--Continued
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10.60	10.20	10.71	12.10	15.57	12.08	15.98	15.53	10.41	9.53	9.51	9.25
2	10.52	10.25	11.36	12.09	15.53	11.88	15.85	15.50	10.43	9.54	9.53	9.30
3	10.45	10.47	11.84	11.94	15.27	11.73	15.90	15.48	10.46	9.45	9.58	9.44
4	10.41	10.61	12.29	11.60	14.95	11.62	16.20	15.44	10.49	9.41	9.61	9.49
5	10.36	10.64	12.30	11.34	14.76	11.52	16.56	15.40	10.51	9.36	9.70	9.50
6	10.25	10.60	11.56	11.17	14.61	11.46	16.90	15.34	10.48	9.30	9.75	9.51
7	10.20	10.53	10.74	11.35	14.43	11.39	17.23	15.03	10.47	9.30	9.66	9.64
8	10.20	10.45	10.30	11.81	14.20	11.33	17.43	14.53	10.51	9.30	9.64	9.74
9	10.25	10.38	10.26	12.10	14.07	11.35	17.41	13.85	10.55	9.29	9.80	9.80
10	10.21	10.33	10.29	11.95	14.25	11.51	17.05	13.10	10.56	9.28	9.80	9.80
11	10.52	10.29	10.30	11.39	14.57	11.67	16.12	12.35	10.55	9.29	9.72	9.74
12	11.20	10.28	10.30	10.99	14.85	11.79	15.01	11.64	10.54	9.28	9.72	9.62
13	11.40	10.24	10.38	10.78	15.12	11.85	14.14	11.13	10.55	9.39	9.63	9.54
14	11.25	10.22	10.48	10.85	15.33	11.94	13.61	10.80	10.58	9.66	9.52	9.50
15	11.01	10.23	10.60	11.38	15.55	12.02	13.34	10.55	10.45	9.70	9.45	9.45
16	10.77	10.19	10.67	12.04	15.76	12.27	13.23	10.40	e10.03	9.65	9.41	9.40
17	10.55	10.20	10.64	12.44	15.87	12.90	12.93	10.32	9.69	9.54	9.40	9.35
18	10.37	10.23	10.56	12.65	15.89	13.88	12.66	10.25	9.63	9.45	9.37	9.33
19	10.25	10.20	10.59	12.77	15.88	14.47	12.45	10.21	9.56	9.40	9.35	9.30
20	10.21	10.25	10.64	12.85	15.89	14.64	12.33	10.20	9.48	9.36	9.35	9.31
21	10.19	10.37	10.74	12.85	15.87	14.66	12.41	10.19	9.37	9.33	9.35	9.36
22	10.20	10.44	10.92	12.81	15.84	14.96	12.57	10.19	9.31	9.33	9.35	10.15
23	10.23	10.45	11.07	12.79	15.77	15.44	12.75	10.19	9.30	9.34	9.36	10.80
24	10.25	10.44	11.32	12.69	15.57	15.94	13.02	10.20	9.31	9.32	9.35	11.08
25	10.24	10.47	11.75	12.70	14.90	16.30	13.79	10.20	9.38	9.54	9.33	11.16
26	10.22	10.51	12.00	13.08	13.99	16.54	14.65	10.23	9.42	9.64	9.31	11.00
27	10.25	10.52	12.10	13.59	13.33	16.68	15.16	10.22	9.47	9.67	9.29	10.70
28	10.23	10.52	12.14	14.30	12.85	16.60	15.40	10.24	9.52	9.66	9.29	10.40
29	10.20	10.50	12.12	14.88	12.38	16.45	15.50	10.27	9.53	9.62	9.30	10.12
30	10.15	10.46	12.10	15.27	---	16.35	15.54	10.32	9.54	9.60	9.29	9.89
31	10.15	---	12.10	15.48	---	16.19	---	10.37	---	9.57	9.26	---
MEAN	10.43	10.38	11.13	12.45	14.93	13.53	14.77	11.92	10.00	9.45	9.48	9.82
MAX	11.40	10.64	12.30	15.48	15.89	16.68	17.43	15.53	10.58	9.70	9.80	11.16
MIN	10.15	10.19	10.26	10.78	12.38	11.33	12.33	10.19	9.30	9.28	9.26	9.25

CAL YR 1999 MEAN 13.26 MAX 17.92 MIN 10.15
WTR YR 2000 MEAN 11.51 MAX 17.43 MIN 9.25
e Estimated

LOCATION.--Lat $29^{\circ} 56^{\prime} 57^{\prime \prime}$, Long $85^{\circ} 00^{\prime} 56^{\prime \prime}$, in SW ${ }^{1} / 4$ sec. 14 , T. 6 S., R. 8 W., Franklin County, Hydrologic Unit 03130011, on left bank at Brickyard Landing,
0.5 mi north of Fort Gadsden, 5.3 mi southwest of Sumatra, and 20.6 mi upstream from mouth.

DRAINAGE AREA.--19,200 mi^{2}, approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1977 to current year.
REVISED RECORDS.--WRD FL-98-4: 1994-97.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark).
REMARKS.--Records fair. Discharges below $15,000 \mathrm{ft}^{3} / \mathrm{s}$ are tide affected.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8270	7900	7680	11100	24200	11000	27700	23800	6290	5600	6200	6430
2	8580	8530	8680	11000	24500	10500	26500	24100	6230	5480	6200	6660
3	8810	7820	10300	10900	23600	10300	26200	24100	6020	5480	6200	6600
4	8740	7820	11500	10500	22100	10300	27500	24000	5780	5420	6170	6430
5	8450	8160	12100	9270	20600	9870	28800	24000	5930	5570	6170	6630
6	8320	8060	10500	9020	19400	9840	30800	23700	5900	5300	6230	6940
7	8110	7870	8810	9350	18500	9770	33200	22700	5630	5200	6340	7140
8	8060	8080	8140	9990	17200	9840	35500	20400	5960	5600	5660	6520
9	8530	8370	8240	11100	15900	10000	36800	17000	6140	5720	5660	6490
10	8450	8430	8290	11100	16200	10300	36200	12700	6460	5600	6020	6690
11	8860	8140	8030	9920	18400	10600	32800	11000	6520	5230	6110	7020
12	9420	7760	8350	8860	20300	10600	27000	9670	6660	5200	6400	6800
13	9990	7680	9270	8760	21800	10400	20500	8790	6370	4980	6050	6600
14	9400	7710	8270	7820	23800	10500	15000	8060	6020	5510	5810	6720
15	8710	7550	8320	8160	24300	10800	12900	7490	6290	5840	5690	6830
16	8030	7190	7900	10100	24900	11400	12700	7220	7630	6200	5390	6690
17	7740	7190	8160	11600	25400	12400	12000	7220	7140	5990	5720	6860
18	7660	7490	8430	12300	25700	12900	11500	7300	6740	5360	5960	4980
19	7680	7820	9120	12600	25900	16800	11200	7440	6400	5140	5930	6080
20	7550	8350	8370	12900	25700	19200	10900	7250	5750	5480	6050	6230
21	7330	8430	9070	12600	25400	18600	11000	7110	5480	e5650	5840	7110
22	7330	8480	8990	12700	25300	19200	11300	7250	5020	e5800	5600	7220
23	7330	8240	8810	12900	25300	21600	11500	6970	5110	e5950	5570	11700
24	6880	8080	8970	12800	24800	24500	12100	6970	5570	6080	5450	10600
25	7000	8370	9500	12300	22600	27100	13200	6940	5780	6110	5450	10100
26	7220	8610	10100	12500	18400	29000	17200	6970	5960	5870	5390	9450
27	7300	8110	10600	13000	13200	30500	20300	6770	5960	5840	5540	8760
28	7330	7950	10900	15700	12400	30900	22300	6600	5960	5720	5840	8140
29	7380	8080	10900	19800	11500	30400	23200	6400	6110	5660	5780	7550
30	7550	7600	11000	22300	---	30600	23500	6340	5750	5900	5750	7080
31	7570	---	11000	23500	---	29200	---	6340	---	6080	6050	---
MEAN	8051	7996	9300	12140	21290	16740	21380	12020	6085	5631	5878	7302
MAX	9990	8610	12100	23500	25900	30900	36800	24100	7630	6200	6400	11700
MIN	6880	7190	7680	7820	11500	9770	10900	6340	5020	4980	5390	4980
IN.	. 48	. 46	. 56	. 73	1.20	1.01	1.24	. 72	. 35	. 34	. 35	. 42

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1978-2000, BY WATER YEAR (WY)

MEAN	15420	16390	24410	30940	42360	46850	36300	24680	19290	21470	19130
MAX	40720	32420	52700	62310	71920	95690	78430	46350	29450	81670	42360
(WY)	1995	1978	1993	1998	1998	1998	1980	1991	1980	1994	1994
MIN	7326	6577	9300	10380	10130	16740	15610	10380	6085	5631	5878
(WY)	1987	1982	2000	1981	1989	2000	1994				
			1999	1999	2000	2000	2000	2000			

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
e Estimated

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8270	7900	7680	11100	17100	11000	18400	17400	6290	5600	6200	6430
2	8580	8530	8680	11000	17200	10500	18100	17400	6230	5480	6200	6660
3	8810	7820	10300	10900	17000	10300	18000	17400	6020	5480	6200	6600
4	8740	7820	11500	10500	16500	10300	18400	17400	5780	5420	6170	6430
5	8450	8160	12100	9270	16000	9870	18700	17400	5930	5570	6170	6630
6	8320	8060	10500	9020	15600	9840	19200	17300	5900	5300	6230	6940
7	8110	7870	8810	9350	15300	9770	19800	17000	5630	5200	6340	7140
8	8060	8080	8140	9990	14900	9840	20400	16300	5960	5600	5660	6520
9	8530	8370	8240	11100	14400	10000	20700	15000	6140	5720	5660	6490
10	8450	8430	8290	11100	14500	10300	20500	12700	6460	5600	6020	6690
11	8860	8140	8030	9920	15200	10600	19700	11000	6520	5230	6110	7020
12	9420	7760	8350	8860	15900	10600	18200	9670	6660	5200	6400	6800
13	9990	7680	9270	8760	16400	10400	16300	8790	6370	4980	6050	6600
14	9400	7710	8270	7820	17000	10500	14100	8060	6020	5510	5810	6720
15	8710	7550	8320	8160	17200	10800	12900	7490	6290	5840	5690	6830
16	8030	7190	7900	10100	17400	11400	12700	7220	7630	6200	5390	6690
17	7740	7190	8160	11600	17500	12400	12000	7220	7140	5990	5720	6860
18	7660	7490	8430	12300	17600	12900	11500	7300	6740	5360	5960	4980
19	7680	7820	9120	12600	17600	14900	11200	7440	6400	5140	5930	6080
20	7550	8350	8370	12900	17600	15800	10900	7250	5750	5480	6050	6230
21	7330	8430	9070	12600	17500	15600	11000	7110	5480	e5650	5840	7110
22	7330	8480	8990	12700	17500	15800	11300	7250	5020	e5800	5600	7220
23	7330	8240	8810	12900	17500	16700	11500	6970	5110	e5950	5570	11700
24	6880	8080	8970	12800	17300	17600	12100	6970	5570	6080	5450	10600
25	7000	8370	9500	12300	16600	18300	13200	6940	5780	6110	5450	10100
26	7220	8610	10100	12500	15300	18800	15100	6970	5960	5870	5390	9450
27	7300	8110	10600	13000	13200	19200	16200	6770	5960	5840	5540	8760
28	7330	7950	10900	14300	12400	19300	16900	6600	5960	5720	5840	8140
29	7380	8080	10900	15700	11500	19100	17200	6400	6110	5660	5780	7550
30	7550	7600	11000	16500	---	19200	17300	6340	5750	5900	5750	7080
31	7570		11000	16900	---	18800		6340		6080	6050	
MEAN	8051	7996	9300	11570	16090	13560	15780	10370	6085	5631	5878	7302
MAX	9990	8610	12100	16900	17600	19300	20700	17400	7630	6200	6400	11700
MIN	6880	7190	7680	7820	11500	9770	10900	6340	5020	4980	5390	4980

CAL YR 1999 MEAN 12480 MAX 20900 MIN 6880
WTR YR 2000 MEAN 9772 MAX 20700 MIN 4980
e Estimated
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.75	2.56	2.31	3.54	5.70	3.32	6.03	5.66	1.94	1.94	2.13	2.04
2	2.84	2.91	2.91	3.51	5.72	3.14	5.92	5.69	1.90	1.97	2.06	2.08
3	2.93	2.32	3.41	3.49	5.64	3.08	5.90	5.69	1.86	1.95	2.00	2.07
4	2.91	2.35	3.78	3.33	5.49	3.07	6.01	5.68	1.82	1.91	1.92	2.10
5	2.75	2.44	3.99	2.88	5.32	2.87	6.13	5.68	1.88	1.86	1.87	2.14
6	2.57	2.44	3.62	2.74	5.19	2.84	6.31	5.65	1.78	1.71	1.93	2.30
7	2.48	2.41	2.79	2.85	5.09	2.80	6.51	5.55	1.70	1.64	2.13	2.42
8	2.64	2.51	2.51	3.18	4.95	2.86	6.70	5.30	1.78	1.75	1.88	2.21
9	2.72	2.66	2.52	3.59	4.80	2.94	6.80	4.92	1.78	1.86	1.87	2.12
10	2.69	2.70	2.54	3.69	4.83	3.08	6.76	4.40	1.84	1.88	2.05	2.31
11	2.80	2.61	2.44	3.18	5.08	3.28	6.48	3.71	1.84	1.79	2.13	2.29
12	3.10	2.41	2.55	2.73	5.29	3.15	5.97	3.08	1.92	1.79	2.06	2.21
13	3.26	2.31	2.87	2.60	5.45	3.05	5.31	2.69	1.89	1.78	2.01	2.09
14	3.13	2.38	2.58	2.27	5.66	3.11	4.69	2.41	1.86	1.96	1.97	2.19
15	2.88	2.31	2.46	2.52	5.71	3.26	4.31	2.16	2.10	2.11	1.83	2.17
16	2.51	2.16	2.30	3.26	5.77	3.58	4.19	2.12	2.35	2.12	1.77	2.20
17	2.39	2.04	2.31	3.70	5.82	3.89	4.00	2.20	2.22	1.97	1.88	2.23
18	2.28	2.22	2.50	3.90	5.84	4.37	3.73	2.34	2.15	1.78	1.92	1.65
19	2.29	2.40	2.78	4.00	5.86	4.91	3.54	2.25	1.99	1.79	1.81	2.03
20	2.33	2.64	2.55	4.10	5.84	5.17	3.48	2.20	1.86	1.82	1.87	2.07
21	2.20	2.64	2.77	3.95	5.81	5.11	3.55	2.21	1.76	---	1.82	2.36
22	2.15	2.64	2.82	4.00	5.80	5.17	3.58	2.20	1.67	---	1.84	3.61
23	2.18	2.63	2.68	4.17	5.81	5.43	3.78	2.10	1.71	---	1.90	4.10
24	2.05	2.53	2.66	4.20	5.75	5.73	4.11	2.06	1.82	2.02	1.87	3.54
25	2.09	2.58	2.92	3.83	5.54	5.97	4.50	2.07	1.82	2.00	1.92	3.23
26	2.21	2.70	3.17	3.96	5.08	6.15	4.95	2.05	1.85	2.04	1.95	2.94
27	2.27	2.62	3.31	4.27	4.50	6.28	5.29	1.95	1.96	1.98	2.02	2.62
28	2.29	2.48	3.42	4.77	3.98	6.32	5.50	1.82	2.04	2.00	2.02	2.39
29	2.31	2.47	3.38	5.24	3.55	6.28	5.59	1.77	2.08	2.07	1.92	2.20
30	2.28	2.27	3.43	5.50	---	6.29	5.63	1.77	1.99	2.11	1.91	2.08
31	2.44	---	3.51	5.63	---	6.17	---	1.91	---	2.16	1.96	---
TOTAL	78.72	74.34	89.79	114.58	154.87	132.67	155.25	101.29	57.16	---	60.22	71.99
MEAN	2.54	2.48	2.90	3.70	5.34	4.28	5.18	3.27	1.91	---	1.94	2.40
MAX	3.26	2.91	3.99	5.63	5.86	6.32	6.80	5.69	2.35	---	2.13	4.10
MIN	2.05	2.04	2.30	2.27	3.55	2.80	3.48	1.77	1.67	--	1.77	1.65

WATER-QUALITY RECORDS
PERIOD OF RECORD.--October 1987 to current year.
REMARKS.--Discharge for sediment samples represent main channel only.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000						
DATE	TIME	SAMPLE LOCATION, CROSS SECTION (FT FM L BANK) (00009)	$\begin{aligned} & \text { GAGE } \\ & \text { HEIGHT } \\ & (\text { FEET }) \\ & (00065) \end{aligned}$	$\begin{gathered} \text { SED. } \\ \text { SUSP. } \\ \text { SIEVE } \\ \text { DIAM. } \\ \% \text { FINER } \\ \text { THAN } \\ .062 \mathrm{MM} \\ (70331) \end{gathered}$	$\begin{aligned} & \text { SEDI- } \\ & \text { MENT, } \\ & \text { SUS- } \\ & \text { PENDED } \\ & \text { (MG/L) } \\ & (80154) \end{aligned}$	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)
OCT						
07.	1140	87.0	2.43	77	18	8280
07.	1142	87.0	2.43	82	18	8280
07.	1145	176	2.43	78	20	8260
07.	1147	176	2.43	77	22	8260
07.	1150	280	2.43	80	22	8250
07.	1152	280	2.42	78	21	8250
07.	1155	375	2.42	96	13	8240
07.	1157	375	2.42	91	16	8240
07.	1200	480	2.42	84	18	8240
07.	1202	480	2.42	82	15	8240
NOV						
17.	1210	87.0	2.13	76	11	7630
17.	1214	176	2.13	87	12	7630
17.	1216	176	2.13	82	13	7630
17.	1219	280	2.13	76	15	7630
17.	1222	280	2.13	79	15	7630
17.	1224	375	2.13	75	10	7630
17.	1226	375	2.13	76	15	7630
17.	1229	480	2.13	71	12	7630
17.	1232	480	2.13	74	11	7630
JAN						
20.	1150	87.0	4.10	81	16	13000
20.	1153	87.0	4.09	91	15	13000
20.	1156	176	4.09	88	14	12900
20.	1159	176	4.09	82	15	12900
20.	1202	280	4.09	89	16	12900
20.	1205	280	4.09	89	15	12900
20.	1208	375	4.09	89	16	12900
20.	1211	375	4.09	87	18	12900
20.	1214	480	4.09	84	17	12900
20.	1216	480	4.09	81	20	12900
MAR						
23.	0930	100	5.39	86	27	21300
23.	0932	100	5.39	86	25	21300
23.	0935	195	5.39	86	25	21300
23.	0937	195	5.39	90	25	21300
23.	0940	305	5.40	87	24	21300
23.	0942	305	5.40	78	28	21300
23.	0945	400	5.40	86	30	21300
23.	0947	400	5.40	88	23	21300
23.	0950	500	5.40	91	25	21300
23.	0952	500	5.40	90	27	21300
JUN						
15.	1000	87.0	2.01	70	26	7490
15.	1002	87.0	2.01	62	28	7490
15.	1005	176	2.01	46	47	7490
15.	1007	176	2.01	76	24	7490
15.	1010	280	2.01	81	23	7490
15.	1012	280	2.01	90	20	7490
15.	1015	375	2.01	89	22	7490
15.	1017	375	2.01	88	22	7490
15.	1020	480	2.01	87	20	7490
15.	1022	480	2.01	88	19	7490
AUG						
02.	1020	87.0	2.08	100	13	7140
02.	1022	87.0	2.09	100	12	7140
02.	1025	176	2.09	35	50	7160
02.	1027	176	2.09	28	61	7160
02.	1030	280	2.09	94	14	7160
02.	1032	280	2.09	96	13	7160
02.	1035	375	2.09	98	14	7160
02..	1040	480	2.09	64	17	7160

LOCATION.--Lat $30^{\circ} 08^{\prime} 06^{\prime \prime}$, long $85^{\circ} 36^{\prime} 56^{\prime \prime}$, in $\mathrm{SE} /{ }^{1} / 4 \mathrm{sec} .14$, T. 4 S., R. 14 W., Bay County, Hydrologic Unit 03140101 , at upstream side of concrete weir control structure above U.S. Highway 98, at boundary of Parker and Springfield communities, 0.9 mi west of State Road 22-A, and 1.2 mi south of State Highway 22. DRAINAGE AREA.-- $3.96 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1998 to current year.
GAGE.--Water-stage recorder, and crest-stage gage.
REMARKS.--No estimated daily discharges. Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.7	31	4.9	6.8	7.2	7.4	28	4.4	3.3	5.6	5.6	2.0
2	4.5	36	4.9	6.4	7.1	7.0	21	4.4	3.4	4.5	7.1	10
3	4.9	19	5.3	6.2	6.8	6.6	17	4.5	3.5	3.9	15	9.6
4	6.0	13	5.6	6.2	7.7	6.2	14	4.6	3.4	3.5	19	7.3
5	6.5	9.8	6.4	5.8	6.4	5.6	11	4.7	3.3	2.9	13	6.4
6	6.1	8.4	7.9	5.4	6.2	5.5	9.9	4.7	3.3	2.5	9.3	5.7
7	5.6	7.3	6.6	5.2	6.2	5.3	9.2	4.9	2.9	2.3	7.0	15
8	5.3	6.7	6.1	5.2	6.3	5.4	8.6	5.2	2.3	4.3	5.7	11
9	5.2	6.3	6.0	5.5	6.3	5.6	7.2	5.0	2.3	5.9	5.0	10
10	11	6.1	5.9	14	6.4	5.8	6.9	4.9	2.6	5.0	6.7	14
11	14	6.0	5.5	11	6.5	6.5	7.0	4.8	3.3	4.3	5.7	12
12	9.8	6.0	5.5	8.7	6.8	6.3	7.1	4.8	2.3	3.9	5.1	9.0
13	7.7	5.6	12	7.3	6.8	5.4	7.1	4.5	3.2	3.6	4.2	6.9
14	6.7	5.5	11	6.5	10	5.1	7.5	4.4	3.5	4.0	3.6	5.9
15	6.1	5.4	7.6	5.6	8.1	5.1	7.0	3.8	3.6	4.7	3.2	5.1
16	5.5	4.8	6.2	5.6	6.9	34	6.9	3.6	4.3	3.9	3.1	4.4
17	5.1	4.6	5.4	5.6	6.6	36	6.7	3.9	4.3	3.4	2.9	3.5
18	5.1	4.7	5.6	5.6	6.4	22	6.7	4.0	4.0	2.8	2.7	2.7
19	5.0	5.0	6.6	6.0	6.2	22	6.2	4.1	3.6	2.3	2.4	2.9
20	5.2	5.2	6.2	5.6	5.7	24	6.2	4.1	3.2	2.0	3.0	3.1
21	4.9	5.6	17	4.9	5.1	19	5.9	4.1	2.9	1.7	3.2	5.1
22	4.6	5.9	18	4.7	4.9	15	5.6	4.1	4.6	1.4	3.1	23
23	4.4	5.8	13	5.9	5.0	13	5.5	4.1	6.0	1.4	2.9	15
24	4.2	5.8	9.7	10	5.0	11	5.8	3.9	5.3	9.3	2.9	9.9
25	4.3	6.1	8.3	8.3	5.2	10	5.1	4.0	4.9	8.2	3.0	7.1
26	4.7	6.2	7.2	6.7	5.2	10	4.3	4.0	5.6	6.7	3.1	6.0
27	5.0	5.8	7.0	6.1	9.2	12	4.1	4.0	5.4	5.2	3.0	4.4
28	5.0	5.5	6.6	7.5	10	9.7	4.1	3.7	6.9	4.2	2.9	3.8
29	5.1	5.3	6.3	7.9	8.3	20	4.1	3.3	7.2	3.6	2.8	3.0
30	5.1	5.0	6.2	7.8	---	64	4.5	2.9	6.9	3.7	2.3	3.0
31	5.5	---	6.3	7.3	---	40	---	2.9	---	4.0	1.9	---
MEAN	5.90	8.45	7.64	6.82	6.71	14.5	8.34	4.20	4.04	4.02	5.17	7.56

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

MEAN $28.9 \quad 16.9$	11.2		6.8		7.9		11.9		7.40		12.		8.89	8.01			00		6.17
SUMMARY STATISTICS	FOR	1999	CALENDAR YEAR					FOR 2000		WATER		AR		WATER	Y		1999	-	2000
ANNUAL MEAN	11.5							6.95					12.2						
HIGHEST DAILY MEAN			164		May				64		Mar		e480				Oct	1	1998
LOWEST DAILY MEAN				2.7	Apr	18				. 4	Jul				4		Jul	22	2000
ANNUAL SEVEN-DAY MINIMUM				3.0	Apr	17				. 1	Jul						Jul	17	2000
INSTANTANEOUS PEAK FLOW									80		Mar	30							
INSTANTANEOUS PEAK STAGE										. 65	Mar								
INSTANTANEOUS LOW FLOW										. 90	Jul				9		Jul	21	2000
10 PERCENT EXCEEDS			22	2					11					25					
50 PERCENT EXCEEDS				7.2						. 6					8				
90 PERCENT EXCEEDS				4.7						. 1					6				

e Estimated

LOCATION.--Lat $30^{\circ} 23^{\prime} 04^{\prime \prime}$, long $85^{\circ} 33^{\prime} 24^{\prime \prime}$, in $\mathrm{SE}^{1} / 4$ sec. 20 , T. 1 S., R. 13 W., Bay County, Hydrologic Unit 03140101 , near center of span on downstream side of bridge on State Highway 388, 0.5 mi downstream from Old Mill Branch, 1.6 mi southwest of Bennett, and 11 mi upstream from mouth.
DRAINAGE AREA.-- $122 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1935 to September 1994. Monthly discharge only for October and November 1936, published in WSP1304. October 1998 to current year.
REVISED RECORDS.--WSP 872: 1937. WSP 1906: Drainage area. WRD FL-80-4: 1979. WRD FL-93-4: 1948 (M), 1989 (M).
GAGE.--Water-stage recorder. Datum of gage is 1.03 ft above National Geodetic Vertical Datum of 1929. Nov. 11, 1935 to Jan. 29, 1962, nonrecording gage and Jan. 30, 1962 to June 16, 1966, water-stage recorder at site 150 ft downstream at present datum. June 17, 1966 to Sept. 28, 1966, nonrecording gage and Oct. 1, 1966 to Sept. 30, 1994, water-stage recorder at present site and datum.
REMARKS.--Records good, except for estimated daily discharges, which are fair. Flow includes large ground-water inflow.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since September 1926, 15.0 ft present datum, from floodmark, discharge not determined.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e512	538	473	471	435	424	439	397	310	414	e361	297
2	e517	736	472	471	430	420	428	384	308	383	e385	299
3	473	749	472	469	426	410	421	371	307	357	e409	328
4	475	589	471	469	424	403	417	363	307	349	e430	344
5	480	535	472	461	422	393	410	357	307	338	e440	352
6	479	516	478	455	421	385	404	356	311	325	e430	334
7	474	507	481	450	422	379	401	351	325	318	e430	392
8	470	500	475	449	421	374	400	350	321	312	348	428
9	469	495	471	447	414	371	394	344	316	305	339	402
10	511	492	471	482	408	371	386	343	311	302	335	357
11	689	489	468	529	403	374	378	343	306	301	330	336
12	719	487	466	483	400	417	374	340	304	303	326	325
13	620	485	554	453	397	439	371	337	305	317	320	320
14	603	484	600	442	486	427	367	336	305	335	312	317
15	554	482	556	431	647	424	364	331	304	354	304	317
16	522	480	511	424	523	463	361	330	308	346	299	327
17	507	478	490	421	456	558	360	327	326	333	293	322
18	496	477	484	420	439	527	357	326	337	322	290	309
19	490	477	489	421	430	467	354	325	333	313	289	304
20	485	476	492	423	426	473	351	323	326	304	291	301
21	485	480	519	423	428	467	350	323	320	298	319	303
22	483	515	605	423	424	443	348	323	314	299	340	402
23	478	508	582	432	420	428	343	325	365	304	331	543
24	472	491	528	504	412	420	364	344	394	339	312	521
25	470	490	503	538	405	412	616	340	359	e370	301	438
26	470	503	492	490	400	411	564	331	349	e395	338	394
27	469	503	486	455	417	463	451	327	379	e385	343	359
28	467	490	481	445	455	485	426	323	413	e374	338	344
29	465	481	477	445	439	453	421	322	410	e364	321	334
30	465	475	474	448	---	465	407	317	434	e351	311	326
31	465	---	473	442	---	447	---	314	---	e340	302	---
MEAN	508	514	499	455	436	432	401	339	334	337	339	356
MAX	719	749	605	538	647	558	616	397	434	414	440	543
MIN	465	475	466	420	397	371	343	314	304	298	289	297
IN.	4.80	4.70	4.72	4.30	3.85	4.08	3.67	3.21	3.05	3.19	3.21	3.26

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1936-2000, BY WATER YEAR (WY)

MEAN	512	504	514	541	551	584	566	510	518	558	575
MAX	1261	890	818	780	838	1045	1176	589	958	1005	962
(WY)	1995	1948	1948	1993	1986	1991	1948	1946	1989	1994	1939
MIN	337	323	317	350	348	358	332	337	334	337	339
(WY)	1956	1956	1956	1956	1957	1956	1956	1956	2000	2000	2000

SUMMARY STATISTICS

ANNUAL MEAN

HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

546			
1550	May	8	
441	Apr	24	
445	Apr	19	
60.74			
644			
520			
471			

FOR 2000 WATER YEAR

412	541				
		1261			
		376			1956
749	Nov 3	4670	Mar	3	1991
289	Aug 19	289	Aug	19	2000
297	Aug 14	297	Aug	14	2000
792	Nov 3	5850	Mar	3	1991
7.20	Nov 3	14.37	Mar	3	1991
289	Aug 18	289	Aug	18	2000
46.03		60.25			
507		704			
414		510			
312		401			

02365200 CHOCTAWHATCHEE RIVER NEAR PITTMAN, FL

LOCATION.--Lat $30^{\circ} 56^{\prime} 59^{\prime \prime}$, long $85^{\circ} 50^{\prime} 35^{\prime \prime}$, in NW $1 / 4$ sec. 9 , T. 6 N., R. 16 W., Holmes County, Hydrologic Unit 03140203 , on downstream side of bridge on State Highway 2, 1.5 mi west of Pittman, 3.8 mi downstream from Florida-Alabama State line and 84 mi upstream from mouth.
DRAINAGE AREA.--3,209 mi^{2}.
PERIOD OF RECORD.--May 1957, April 1960 and October 1975 to June 1976 (gage height and discharge measurements only), July 1976 to September 1981, October 1996 to September 1998 (gage height and discharge measurements only), October 1998 to current year.
GAGE.--Water-stage recorder. Datum of gage is 51.83 ft above National Geodetic Vertical Datum of 1929 (levels by Northwest Florida Water Management District). Apr. 8, 1957 to Sept. 15, 1976, nonrecording gage at same site and datum. July 1, 1976 to Sept. 30, 1981, water stage recorder. Oct. 1 , 1996 to Sept. 30, 1998, nonrecording gage.
REMARKS.-- Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1040	1030	1150	1610	2860	2290	3090	958	404	759	555	349
2	1050	1730	1120	1590	2690	2170	3390	914	396	679	604	380
3	982	2600	1100	1580	2520	2040	3040	891	392	597	714	495
4	995	2400	1110	1620	2370	1940	2700	861	388	544	1210	531
5	1120	2120	1110	1710	2230	1900	2450	823	391	508	1030	493
6	1130	1930	1180	1770	2100	1840	2270	787	404	478	1040	562
7	1110	1700	1270	1670	1980	1790	2030	756	404	447	868	676
8	1070	1480	1280	1600	1910	1830	1860	733	399	419	767	825
9	998	1340	1270	1550	1870	1890	1700	701	389	406	709	811
10	1330	1260	1290	1850	1820	1890	1580	677	381	397	704	723
11	2350	1210	1290	3890	1780	1840	1480	652	372	403	652	664
12	3010	1170	1260	4910	1750	1910	1410	631	368	394	612	617
13	2620	1150	1390	4260	1770	2100	1350	615	361	428	553	597
14	2370	1120	1960	3700	2550	2050	1350	612	357	457	520	614
15	2180	1100	2110	3250	6370	1940	1760	625	355	460	486	667
16	1970	1080	1970	2730	7060	2030	2150	630	380	444	461	640
17	1920	1060	1830	2330	4870	2750	1940	592	532	405	466	735
18	1710	1040	1660	2110	3610	3540	1710	559	758	373	453	623
19	1460	1030	1860	2000	3050	3230	1530	537	841	351	448	565
20	1300	1030	2600	1960	2620	3770	1370	519	818	337	458	525
21	1200	1060	3360	1930	2340	6150	1260	509	700	327	e429	521
22	1160	1140	4690	1830	2130	6530	1150	508	623	340	401	735
23	1140	1180	5020	1940	1990	5460	1070	513	579	351	391	1190
24	1100	1170	3990	3620	1910	4850	1080	513	545	407	392	1530
25	1070	1160	3220	5490	1850	4550	1220	490	566	400	396	1430
26	997	1180	2660	5710	1810	3990	1340	481	603	361	396	1190
27	949	1230	2270	4520	1820	3800	1270	465	940	350	378	1040
28	940	1220	2010	3650	2100	3950	1160	453	756	379	379	985
29	926	1190	1840	3170	2390	3620	1070	441	764	386	396	898
30	920	1160	1720	3070	---	3120	1020	430	861	362	395	808
31	911		1650	3030	---	2970	---	419	---	449	359	---
MEAN	1388	1342	2008	2763	2625	3024	1727	622	534	432	568	747
MAX	3010	2600	5020	5710	7060	6530	3390	958	940	759	1210	1530
MIN	911	1030	1100	1550	1750	1790	1020	419	355	327	359	349
IN.	. 50	. 47	. 72	. 99	. 88	1.09	. 60	. 22	. 19	. 16	. 20	. 26

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976-2000, BY WATER YEAR (WY)

MEAN	3345	3152	4189	6459	6967	9632	6642	4694	2972	2735	2305
MAX	9492	5727	10700	15520	12730	18540	15910	12040	6725	5871	3933
(WY)	1999	1978	1977	1978	1979	1980	1980	1978	1978	1999	1978
MIN	1238	1342	2008	1971	2625	3024	1727	622	534	432	568
(WY)	1979	2000	2000	1981	2000	2000	2000	2000	2000	2000	2000

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

2808		
17800	Jul	1
838	Sep	19
897	Sep	15
11.88		
4880		
2120		
1060		

FOR 2000 WATER YEAR
$\begin{array}{ccc}1480 & & \\ & & \\ 7060 & \text { Feb 16 } \\ 327 & \text { Jul 21 } \\ 355 & \text { Jul 17 } \\ 7670 & \text { Feb 15 } \\ 14.45 & \text { Feb 15 } \\ 308 & \text { Jul 21 } \\ 6.28 & & \\ 3060 & & \\ 1140 & & \\ 398 & & \end{array}$

WATER YEARS 1976 - 2000

4562			
7220			1978
1480			2000
64000	Jan 28	1978	
327	Jul 21 2000		
355	Jul 17 2000		
64700	Jan 28 1978		
28.56	Jan 28	1978	
308	Jul 21	2000	
19.32			
9930			
2760			
1150			

LOCATION.--Lat $30^{\circ} 51^{\prime} 25^{\prime \prime}$, long $85^{\circ} 45^{\prime} 44^{\prime \prime}$, in NW $1 / 4$ sec. 8 , T. 5 N., R. 17 S., Holmes County, Hydrologic Unit 03140203, on downstream side of bridge on U.S. Highway 177A, 0.4 mi above Caney Branch, 7.3 mi upstream of mouth, and 7.6 mi northwest of Bonifay.

DRAINAGE AREA.--148 mi ${ }^{2}$.
PERIOD OF RECORD.--March 1983 to September 1987, discharge measurements and annual maximum discharge. October 1998 to current year.
GAGE.--Water-stage recorder. Datum of gage is 42.94 ft above National Geodetic Vertical Datum of 1929. Mar. 23, 1983 to Sept. 30, 1987, nonrecording gage at same site and datum.
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	39	40	34	42	66	75	164	39	20	56	27	19
2	37	50	34	43	64	70	138	38	20	48	30	20
3	36	53	35	44	62	68	120	36	19	41	30	22
4	37	50	35	45	60	66	111	35	19	37	29	27
5	38	44	35	49	59	64	104	34	20	34	29	26
6	38	41	37	51	58	62	99	35	19	31	27	27
7	37	39	37	48	57	60	88	34	20	30	25	32
8	36	38	37	45	56	58	82	32	20	28	25	40
9	35	38	37	44	55	57	78	31	20	27	23	37
10	37	38	37	49	55	56	74	31	19	27	23	32
11	46	37	37	65	54	80	70	31	18	29	22	28
12	48	36	37	75	54	249	68	29	18	31	22	26
13	47	36	39	62	62	376	64	30	18	32	20	24
14	43	35	39	54	124	371	61	29	18	34	19	23
15	40	35	40	50	247	252	59	28	17	33	18	33
16	38	35	39	49	273	191	56	28	21	31	17	45
17	37	34	37	47	263	313	54	27	31	28	17	34
18	35	34	38	46	156	352	52	26	31	26	16	30
19	35	34	44	47	116	329	48	26	30	25	16	27
20	34	34	49	46	100	332	46	26	28	24	16	26
21	34	35	64	45	91	397	44	26	25	24	17	28
22	34	35	78	44	84	399	42	26	26	25	18	45
23	34	36	81	53	79	338	40	25	34	28	19	98
24	33	36	64	92	76	236	42	26	47	26	18	108
25	33	36	54	136	74	184	51	24	79	26	18	72
26	32	37	49	132	72	161	61	23	75	25	20	59
27	32	37	46	91	72	181	52	22	64	24	20	48
28	32	37	45	75	77	251	47	22	57	24	22	42
29	31	36	44	70	78	245	43	22	56	23	22	39
30	31	35	43	69	---	193	41	21	60	23	21	36
31	31	---	42	68	---	184	---	22	---	24	20	--
MEAN	36.5	38.0	44.1	60.5	94.6	202	70.0	28.5	31.6	29.8	21.5	38.4
MAX	48	53	81	136	273	399	164	39	79	56	30	108
MIN	31	34	34	42	54	56	40	21	17	23	16	19
IN.	. 28	. 29	. 34	. 47	. 69	1.57	. 53	. 22	. 24	. 23	. 17	. 29

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

| MEAN | 143 | 94.1 | 102 | 206 | 158 | 203 | 68.9 | 39.8 | 114 | 197 | 47.6 | 39.0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| MAX | 249 | 150 | 160 | 351 | 223 | 204 | 70.0 | 51.0 | 196 | 1965 | 73.7 | 39.5 |
| (WY) | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 2000 | 1999 | 1999 | 1999 | 1999 | 1999 |
| MIN | 36.5 | 38.0 | 44.1 | 60.5 | 94.6 | 202 | 67.9 | 28.5 | 31.6 | 29.8 | 21.5 | 38.4 |
| (WY) | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 1999 | 2000 | 2000 | 2000 | 2000 | 2000 |

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAEE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

141		
1170	Jun 30	
31	Oct 29	
32	Oct 25	
324		
60		
35		

FOR 2000 WATER YEAR

57.9		
399	Mar	22
16	Aug	18
17	Aug	15
405	Mar	21
6.18	Mar	21
15	Aug	21
5.32		
98		
37		
22		

118				
178				
57.9				1999
1170		Jun	30	1909
16	Aug	18	2000	
17	Aug	15	2000	
7200	Mar	6	1984	
13.73	Mar	6	1984	
15	Aug	21	2000	
10.81				
276				
58				
26				

LOCATION.--Lat $30^{\circ} 37^{\prime} 28^{\prime \prime}$, long $85^{\circ} 56^{\prime} 33^{\prime \prime}$, in $\mathrm{NE} / \frac{1}{4} \mathrm{sec} .33$, T. 3 N., R. 17 W., Walton County, Hydrologic Unit 03140203 , on downstream side of bridge on State Highway 81, 0.6 mi north of Bruce Creek School, 1.4 mi south of Knox Hill, and 2.4 mi north of Redbay.
DRAINAGE AREA.--82.4 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1998 to current year.
GAGE.--Water-stage recorder.
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36	32	14	28	48	41	58	16	7.0	31	40	9.4
2	27	108	14	29	43	35	44	15	7.0	19	53	18
3	23	84	14	29	39	32	38	14	6.9	13	39	18
4	23	42	14	29	36	30	37	13	7.0	12	32	16
5	32	31	14	35	34	28	35	13	6.9	10	22	13
6	34	27	16	38	31	26	30	14	7.0	9.3	16	12
7	29	25	19	31	30	25	27	13	9.2	8.3	14	30
8	24	23	19	28	30	24	25	13	8.7	7.6	19	100
9	22	22	18	26	29	23	23	12	7.6	7.1	28	58
10	40	21	17	33	28	23	22	12	7.2	7.2	20	31
11	142	20	17	104	27	25	21	11	6.9	11	17	22
12	123	20	18	69	27	61	20	11	6.7	8.1	16	18
13	55	19	19	47	30	86	19	10	6.8	7.8	14	19
14	47	18	23	46	262	45	27	10	6.6	11	12	19
15	38	18	29	44	354	34	59	9.7	6.8	15	10	18
16	30	18	23	37	163	50	48	9.5	7.4	11	9.0	27
17	26	17	20	32	90	219	32	9.3	13	8.8	8.3	19
18	23	16	19	29	86	205	25	9.0	13	7.6	7.7	14
19	20	16	32	28	82	101	22	8.9	12	6.9	7.3	12
20	19	16	83	28	66	184	19	8.8	9.6	6.5	7.1	11
21	19	16	71	28	48	171	17	8.6	8.3	6.2	7.0	15
22	18	17	188	26	39	99	16	8.5	7.8	6.1	6.9	101
23	18	19	162	28	36	78	15	8.4	7.9	6.1	7.1	349
24	17	18	70	166	33	76	22	8.3	11	6.0	7.1	370
25	16	17	54	272	32	73	46	8.0	13	7.0	6.9	173
26	15	18	47	138	31	65	40	7.9	12	7.5	6.8	143
27	16	17	38	79	32	79	26	7.8	12	23	6.7	175
28	16	17	33	72	58	92	21	7.5	14	53	7.0	79
29	16	16	31	71	59	64	21	7.3	25	22	7.4	50
30	16	15	29	65	---	73	18	7.2	29	15	7.3	38
31	16	---	28	54	---	78	---	7.1	---	20	8.2	-
MEAN	32.1	25.4	38.5	57.1	65.6	72.4	29.1	10.3	10.1	12.6	15.2	65.9
MAX	142	108	188	272	354	219	59	16	29	53	53	370
MIN	15	15	14	26	27	23	15	7.1	6.6	6.0	6.7	9.4

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

MEAN	268	87.1	111	144	96.0	166	38.6	32.7	97.3	153	76.4
MAX	504	149	184	231	127	260	48.0	55.2	185	292	138
(WY)	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999
MIN	32.1	25.4	38.5	57.1	65.6	72.4	29.1	10.3	10.1	12.6	15.2
(WY)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1999 - 2000
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

123			
1100	Mar	10	
14	Dec	1	
14	Nov	29	
296			
70			
19			

36.1		
370	Sep 24	
6.0	Jul 24	
6.4	Jul 19	
417	Sep 24	
15.16	Sep 24	
5.9	Jul 23	
78		
21		
7.4		

111			
185			1999
36.1			2000
e4550	Oct	191998	
6.0	Jul 24	2000	
6.4	Jul 19	2000	
e4550	Oct	1	1998
18.73	Mar 10	1999	
5.9	Jul 23	2000	
259			
45			
10			

e Estimated

LOCATION.--Lat $30^{\circ} 27^{\prime} 03^{\prime \prime}$, long $85^{\circ} 53^{\prime} 54^{\prime \prime}$, in $\mathrm{NE}^{1} / 4$ sec. 36, T. 1 N., R. 17 W., Walton County, Hydrologic Unit 03140203 , near center of main channel on upstream side of bridge on State Highway 20, 4.0 mi southeast of Bruce, 5.8 mi downstream from Holmes Creek, and 21 mi upstream from mouth.
DRAINAGE AREA.--4,384 mi^{2}.
PERIOD OF RECORD.--October 1930 to March 1983; Apr. 1983 to May 1984 (discharge measurements only); June 1984 to current year.
REVISED RECORDS.--WSP 872: 1937. WSP 1384: Drainage area. WSP 1504: 1931-34.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Apr. 1, 1983 to May 14, 1999, nonrecording gage at same site and datum. Apr. 6, 1934 to Mar. 31, 1983, water-stage recorder at same site at datum 3.94 ft lower. Oct. 1, 1930 to Apr. 5, 1934, nonrecording gage at site 1.0 mi downstream at datum 4.19 ft lower.
REMARKS.--Records good.
EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of March 1929 reached a stage of 25.0 ft at former site and datum, from floodmarks, discharge, $220,000 \mathrm{ft}^{3} / \mathrm{s}$, from rating curve extended above $145,000 \mathrm{ft}^{3} / \mathrm{s}$.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2300	2290	2400	3310	5370	3490	5590	2490	1410	1890	1360	1120
2	2320	2590	2370	3180	4960	3640	5260	2370	1390	1880	1470	1270
3	2310	2820	2340	3070	4680	3660	4980	2270	1370	1810	1550	1270
4	2340	3070	2340	3050	4450	3610	4900	2160	1320	1710	1620	1210
5	2370	3420	2370	3050	4250	3510	4810	2090	1330	1620	1700	1270
6	2380	3600	2430	3040	4060	3380	4600	2040	1350	1540	1870	1370
7	2410	3580	2420	3060	3890	3280	4330	2000	1280	1470	1920	1460
8	2400	3460	2450	3100	3710	3190	4060	1960	1230	1450	1920	1570
9	2380	3240	2480	3030	3550	3140	3790	1910	1210	1410	1850	1690
10	2450	3010	2500	3070	3430	3140	3500	1870	1200	1340	1800	1760
11	2520	2820	2510	3120	3330	3160	3270	1840	1190	1310	1730	1760
12	2900	2670	2510	3330	3260	3300	3090	1800	1170	1270	1670	1700
13	3460	2570	2540	3840	3240	3450	2950	1780	1170	1310	1610	1630
14	3840	2500	2580	4330	3600	3560	2860	1740	1160	1390	1550	1570
15	3990	2470	2670	4780	3850	3660	2820	1700	1160	1420	1490	1540
16	3910	2430	2950	5010	4170	3890	2830	1670	1220	1410	1430	1540
17	3770	2380	3150	4970	4660	4100	3020	1680	1270	1380	1320	1550
18	3580	2340	3190	4670	5300	4230	3220	1650	e1380	1320	1270	1560
19	3410	2320	3250	4280	5970	4420	3200	1650	1480	1190	1230	1550
20	3190	2310	3210	3890	6360	4780	3030	1620	1600	1130	1220	1510
21	2970	2310	3380	3620	6250	5110	2850	1600	1700	1120	1180	1510
22	2770	2330	3770	3440	5600	5310	2680	1580	1730	1110	1130	1640
23	2630	2350	4160	3400	4810	5530	2530	1570	1690	1100	1120	1850
24	2530	2390	4530	3590	4250	5900	2980	1550	1640	1110	1120	2100
25	2470	2430	4880	3980	3880	6290	3170	1540	1600	1110	1120	2400
26	2350	2450	5180	4390	3610	6630	2900	1530	1590	1160	1130	2520
27	2270	2450	5210	4850	3480	6710	2800	1510	1620	1200	1150	2520
28	2240	2440	4910	5380	3400	6510	2820	1490	1680	1260	1140	2410
29	2200	2450	4400	5790	3390	6330	2790	1480	1850	1360	1130	2190
30	2180	2420	3920	5990	---	6180	2640	1440	1900	1310	1110	2020
31	2170	-	3550	5810	---	5900	---	1420	---	1320	1110	---
MEAN	2742	2664	3244	3981	4302	4484	3476	1774	1430	1368	1420	1702
MAX	3990	3600	5210	5990	6360	6710	5590	2490	1900	1890	1920	2520
MIN	2170	2290	2340	3030	3240	3140	2530	1420	1160	1100	1110	1120
IN.	. 72	. 68	. 85	1.05	1.06	1.18	. 88	. 47	. 36	. 36	. 37	. 43

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931-2000, BY WATER YEAR (WY)

MEAN	4524	4376	6378	9144	10590	12280	10810	6373	5128	5652	5831	4547
MAX	24890	13870	25970	29400	20460	31510	27220	20870	18080	48020	26770	24000
(WY)	1999	1931	1954	1936	1978	1998	1975	1946	1973	1994	1939	1937
MIN	1399	1742	1945	2344	3899	2534	3476	1774	1430	1368	1420	1626
(WY)	1969	1955	1956	1956	1951	1955	2000	2000	2000	2000	2000	1968

SUMMARY STATISTICS

ANNUAL MEAN

highest annual mean
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
instantaneous peak stage
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

5080			
17500	Jul	5	
2080	Sep	20	
2140	Sep	18	
15.73			
8520			
4090			
2370			

FOR 2000 WATER YEAR

LOCATION.--Lat $30^{\circ} 40^{\prime} 08^{\prime \prime}$, long $86^{\circ} 11^{\prime} 12^{\prime \prime}$ in SW $1 / 4 \mathrm{sec} .18$, T. 2 N., R. 19 W., Walton County, Hydrologic unit 03140102 , at bridge on Nelson Road, 0.3 mi downstream from Cosson Mill Creek, 0.6 mi upstream from Oakie Creek, 1.5 mi southwest of Sconiers Mill, and 1.9 mi south of Pleasant Ridge.
DRAINAGE AREA.--39.1 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1998 to current year.
GAGE.--Water-stage recorder. Elevation of gage is National Geodetic Vertical Datum of 1929, from topographic map.
REMARKS.--Records good, except for estimated daily discharges, which are fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	71	112	48	65	65	56	54	39	27	42	43	26
2	77	139	49	64	63	55	53	38	27	36	39	39
3	62	71	49	63	61	53	53	38	26	34	40	30
4	59	64	49	65	60	52	55	38	26	33	33	29
5	59	62	50	62	59	50	50	39	28	31	30	28
6	61	60	52	60	58	49	49	37	31	30	30	43
7	66	59	50	59	58	47	48	36	27	29	30	122
8	62	58	50	59	58	47	48	36	27	28	33	59
9	59	57	52	60	57	47	46	35	27	33	35	43
10	57	57	66	139	56	47	46	35	26	40	e36	37
11	57	56	58	82	55	106	45	34	26	33	e29	34
12	329	55	56	67	54	123	45	33	26	36	e24	32
13	322	54	136	68	91	63	44	33	27	33	e22	30
14	103	54	80	64	248	57	62	32	26	31	e23	29
15	86	54	63	60	86	54	56	31	38	30	24	34
16	79	53	58	59	71	166	48	31	58	27	24	29
17	73	53	56	59	67	166	45	31	57	26	23	27
18	69	53	62	58	66	76	43	31	38	25	22	26
19	66	53	203	59	62	74	41	31	34	24	23	26
20	63	54	82	58	59	104	41	30	32	24	33	26
21	62	58	250	54	57	72	40	31	30	28	69	30
22	62	55	188	55	57	64	39	36	32	29	36	191
23	59	53	89	167	56	61	39	32	34	42	31	149
24	57	53	79	243	55	58	57	30	41	30	28	57
25	56	53	74	105	54	57	55	29	32	27	29	54
26	56	54	71	80	53	59	45	29	34	29	41	70
27	55	52	70	74	78	76	42	28	46	36	30	47
28	54	50	68	74	71	61	44	28	52	28	29	41
29	54	50	66	75	58	57	41	35	70	27	27	38
30	56	49	65	71	---	71	39	29	65	38	25	36
31	57	---	65	68	---	59	---	28	---	56	24	---
MEAN	80.9	60.2	79.2	77.3	68.7	70.5	47.1	33.0	35.7	32.1	31.1	48.7
MAX	329	139	250	243	248	166	62	39	70	56	69	191
MIN	54	49	48	54	53	47	39	28	26	24	22	26
IN.	2.39	1.72	2.33	2.28	1.90	2.08	1.34	. 97	1.02	. 95	. 92	1.39

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

e Estimated

LOCATION.--Lat $30^{\circ} 55^{\prime} 34^{\prime \prime}$, long $86^{\circ} 33^{\prime} 34^{\prime \prime}$ in $\mathrm{SE}^{1} / 4 \mathrm{sec} .17$, T. 5 N., R. 23 W., Okaloosa County, Hydrologic unit 03140103, at bridge on downstream side at State Highway 2, 0.7 mi east of Oak Grove, and 58 mi above mouth.
DRAINAGE AREA.--525 mi^{2} approximately.
PERIOD OF RECORD.--September 1966 to October 1968, annual maximum and gage height only. October 1998 to current year.
GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1968, nonrecording gage at same site and datum.
REMARKS.--Records good, except for estimated daily discharges, which are fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAIL'Y MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e196	250	225	325	568	489	664	242	120	159	148	100
2	e202	365	225	324	514	428	549	230	118	148	160	158
3	e238	403	226	322	466	393	482	222	115	140	198	131
4	e240	488	230	321	432	375	453	212	112	132	212	135
5	e260	425	233	325	413	396	454	207	110	123	221	144
6	e236	347	233	334	392	401	448	202	109	117	218	132
7	e225	306	239	333	377	368	413	196	110	110	192	162
8	e227	283	248	330	368	344	378	189	106	105	175	177
9	e225	266	242	326	363	330	352	180	106	118	171	174
10	e270	255	239	555	358	320	334	177	103	112	163	173
11	323	247	235	953	355	329	317	174	100	106	159	161
12	380	242	239	988	348	356	302	171	97	106	172	147
13	408	240	288	892	347	383	290	171	95	112	151	138
14	376	238	296	611	527	353	299	173	102	107	135	153
15	347	236	327	481	1290	327	521	172	115	101	124	136
16	319	232	345	415	1420	361	889	205	134	95	119	159
17	294	230	308	379	909	482	699	211	157	92	110	138
18	275	228	292	376	667	598	495	194	284	107	103	121
19	260	224	522	400	567	555	400	178	248	98	98	114
20	249	221	621	401	505	755	351	168	297	109	98	110
21	246	233	866	378	452	1040	325	159	239	120	99	106
22	241	241	992	359	420	924	298	161	199	119	107	137
23	236	264	943	367	428	673	277	159	182	121	99	139
24	234	267	775	672	409	521	279	153	158	117	94	146
25	231	257	564	1060	404	443	306	149	148	142	91	150
26	227	252	447	1070	383	408	367	144	198	120	92	140
27	222	244	394	798	394	694	358	138	278	118	93	136
28	215	240	372	601	466	1310	309	137	212	108	117	135
29	213	235	355	533	527	1190	277	134	195	98	108	127
30	213	229	351	563	---	939	256	128	176	112	95	120
31	210	---	329	579	---	809	---	124	---	143	90	---
MEAN	259	273	394	528	520	558	405	176	157	117	136	140
MAX	408	488	992	1070	1420	1310	889	242	297	159	221	177
MIN	196	221	225	321	347	320	256	124	95	92	90	100
IN.	. 59	. 60	. 89	1.19	1.10	1.26	. 89	. 40	. 34	. 26	. 31	. 31

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

MEAN	3182	683	647	957	593	883	428	404	501	754	266
MAX	6104	1093	901	1385	668	1209	452	632	844	1391	396
(WY)	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999
MIN	259	273	394	528	520	558	405	1999			
(WY)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1999-2000
ANNUAL MEAN

ANNUAL MEAN	679	
HIGHEST ANNUAL MEAN		
LOWEST ANNUAL MEAN	4010	Mar
HIGHEST DAILY MEAN	177	Sep
HOWEST DAILY MEAN	181	Sep
LOWE		
ANNUAL SEVEN-DAY MINIMUM		
INSTANTANEOUS PEAK FLOW		
INSTANTANEOUS PEAK STAGE		
INSTANTANEOUS LOW FLOW	18.07	
ANNUAL RUNOFF (INCHES)	1510	
10 PERCENT EXCEEDS	457	
50 PERCENT EXCEEDS	227	

305	794				
	12861999				
	3052000				
1420	Feb 16	e66100	Oct	1	1998
90	Aug 31	90	Aug	31	2000
96	Aug 21	96	Aug	21	2000
1570	Feb 16	e66100	Oct	1	1998
84.62	Feb 16	108.42	Sep	30	1998
87	Aug 31	87	Aug	31	2000
8.13		21.16			
557		1380			
239		379			
110		135			

e Estimated

02368500 SHOAL RIVER NEAR MOSSY HEAD, FL
LOCATION.--Lat $30^{\circ} 47^{\prime} 45^{\prime \prime}$, long $86^{\circ} 18^{\prime} 25^{\prime \prime}$ in SW sec. 36, T. 4 N., R. 21 W., Walton County, Hydrologic unit 03140103, near center span on dowstream side of bridge on County Road 1087, about 200 ft downstream from Machine Branch, 3.9 miles north of Mossy Head and 34 miles upstream from mouth.
DRAINAGE AREA.--123 sq mi.
PERIOD OF RECORD.--March 1951 to September 1978, May to September 2000.
GAGE.--Water-stage recorder. Datum of gage is 105.59 ft National Geodetic Vertical Datum of 1929. Prior to July 24, 1956, at site 300 ft north at same datum. REMARKS.--Records good.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAIL'Y MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	e58	38	73	80	40
2	-	---	---	---	-	---	---	e57	37	60	70	58
3	--	---	-	-	-	-	--	e57	37	60	93	46
4	--	--	-	-	---	-	---	e57	37	55	61	44
5	---	---	---	---	---	---	---	e58	37	49	50	41
6	--	--	---	-	--	--	--	e56	38	46	47	51
7	-	---	---	---	---	---	---	e54	37	42	48	139
8	--	---	---	-	-	---	---	e53	36	43	49	112
9	--	---	-	-	-	---	---	e52	36	59	55	73
10	---	---	---	---	---	---	---	e52	36	54	85	60
11	---	---	---	-	--	---	---	51	36	47	65	53
12	-	---	---	---	---	---	---	49	36	45	55	49
13	--	--	---	-	--	---	---	48	35	46	47	47
14	---	---	---	---	---	---	---	47	36	46	42	47
15	--	--	---	-	--	---	---	45	41	43	40	83
16	---	---	---	-	--	--	---	44	76	40	39	62
17	-	---	---	---	---	---	---	44	81	38	38	51
18	--	---	---	-	---	---	---	45	74	36	37	48
19	--	---	---	-	-	---	---	45	52	35	37	46
20	---	---	---	-	--	---	---	52	43	36	37	45
21	---	---	---	-	--	-	---	51	38	48	48	54
22	--	-	---	-	---	---	---	49	34	39	45	204
23	--	-	---	-	--	-	---	44	33	43	43	364
24	--	---	---	-	-	---	---	41	34	41	39	156
25	--	---	---	--	-	---	---	41	30	40	38	93
26	--	---	---	-	-	---	---	40	29	49	46	113
27	---	---	---	---	--	---	-	39	53	49	41	83
28	---	---	---	---	--	--	---	38	78	41	46	70
29	---	---	---	-	-	---	---	40	81	38	42	64
30	---	--	-	---	--	-	-	42	96	43	38	61
31	---	---	---	---	---	---	---	43	---	65	36	---
MEAN	--	---	---	---	---	---	---	48.1	46.2	46.7	49.6	81.9
MAX	---	---	---	---	---	---	---	58	96	73	93	364
MIN	---	---	---	---	---	---	---	38	29	35	36	40
IN.	-	---	---	---	---	---	--	. 45	. 42	. 44	. 46	. 74

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951-2000, BY WATER YEAR (WY)

MEAN	193	168	249	286	319	305	311	211	200	191	215
MAX	963	556	890	652	649	739	837	630	582	499	831
(WY)	1976	1976	1954	1974	1974	1978	1964	1978	1959	1975	1975
MIN	50.6	67.3	67.1	103	107	78.3	90.3	48.1	46.2	46.7	49.6
(WY)	1973	1956	1956	1955	1957	1955	1967	2000	2000	2000	2000

SUMMARY STATISTICS

ANNUAL MEAN	243			
HIGHEST ANNUAL MEAN	399		1978	
LOWEST ANNUAL MEAN	126		1955	
HIGHEST DAILY MEAN	8250	Jul 31	1975	
LOWEST DAILY MEAN	29	Jun 26	2000	
ANNUAL SEVEN DAY MINIMUM	34	Jun 20	2000	
MAXIMUM PEAK FLOW	10500	Apr 27	1964	
MAXIMUM PEAK STAGE	23.64	Apr 27	1964	
INSTANTANEOUS LOW FLOW	27	Jun 26	2000	
ANNUAL RUNOFF (INCHES)	26.79			
10 PERCENT EXCEEDS	434			
50 PERCENT EXCEEDS	164			
90 PERCENT EXCEEDS	75			

e Estimated

LOCATION.--Lat $30^{\circ} 41^{\prime} 50^{\prime \prime}$, long $86^{\circ} 34^{\prime} 15^{\prime \prime}$ in SW $1 / 4$ sec. 5 , T. 2 N., R. 23 W., Okaloosa County, Hydrologic Unit 03140103 , near center of bridge on downstream side of southbound lane on State Highway 85, 3.5 mi downstream from Titi Creek, 4.2 mi south of Crestview, and 7 mi upstream from mouth.
DRAINAGE AREA.--474 mi^{2}.
PERIOD OF RECORD.--July 1938 to current year.
REVISED RECORDS.--WSP 1274: 1939-40, 1944, 1947, 1950. WSP 1384: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 47.21 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 12, 1939, June 12, 1972 to Aug. 22, 1973, and July 8, 1994 to Oct. 6, 1995, nonrecording gage at same site and datum.
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	622	640	447	599	605	491	548	302	210	455	325	216
2	559	1240	447	592	579	466	486	297	207	355	344	304
3	537	1250	450	587	557	448	457	292	203	305	417	295
4	645	807	454	582	542	447	451	288	202	292	365	272
5	706	648	458	591	528	443	432	289	201	274	298	248
6	646	601	482	580	515	432	410	285	212	255	258	229
7	594	573	472	558	512	420	394	281	203	240	279	442
8	549	555	463	543	511	411	378	276	195	234	285	647
9	533	542	463	541	506	406	361	270	193	315	314	476
10	924	533	480	680	495	402	351	265	190	390	284	353
11	2170	527	505	886	489	412	347	261	186	303	287	303
12	2170	520	501	818	484	497	346	256	186	279	275	276
13	1260	510	694	668	485	506	341	252	193	339	246	271
14	897	506	861	609	651	444	437	248	190	278	223	268
15	790	499	732	564	897	418	573	240	215	255	212	309
16	711	489	589	543	872	465	495	234	462	236	204	312
17	666	481	532	534	645	724	419	233	774	225	198	264
18	625	480	539	530	579	716	377	234	436	216	193	241
19	599	486	1030	532	549	560	356	232	354	206	203	231
20	585	484	1480	543	522	566	339	229	305	202	224	226
21	583	507	1320	534	495	635	332	235	273	207	276	261
22	572	511	1900	515	477	574	320	273	302	249	270	751
23	556	500	1760	597	467	487	312	260	259	257	256	1290
24	533	489	987	918	458	448	332	238	293	234	232	1190
25	524	485	795	1040	449	429	455	229	275	219	213	647
26	519	486	722	911	443	428	448	223	298	228	226	509
27	517	481	684	716	487	581	383	218	531	250	241	451
28	510	471	659	648	590	731	351	214	582	236	247	386
29	502	463	636	649	554	606	330	252	562	215	246	346
30	500	456	618	647	---	650	312	248	584	216	228	323
31	501	---	607	630	---	627	---	220	---	265	211	---
MEAN	729	574	734	641	550	512	396	254	309	265	261	411
MAX	2170	1250	1900	1040	897	731	573	302	774	455	417	1290
MIN	500	456	447	515	443	402	312	214	186	202	193	216
MED	585	506	607	592	515	466	378	252	237	250	247	306
IN.	1.77	1.35	1.79	1.56	1.25	1.25	. 93	. 62	. 73	. 65	. 63	. 97

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938-2000, BY WATER YEAR (WY)

MEAN	875	850	1021	1241	1384	1505	1306	988	999	1092	1115
MAX	4097	2252	3601	2606	2974	3327	3056	2752	4421	5436	4385
(WY)	1999	1996	1954	1978	1982	1948	1960	1978	1989	1994	1975
MIN	304	331	345	417	515	365	396	254	309	265	261
(WY)	1955	1955	1956	1939	1951	1955	2000	2000	2000	2000	2000

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

1027		
4370	Jul	14
447	Dec	1
454		Nov
	29	
29.41		
1780		
861		
517		

FOR 2000 WATER YEAR

470		
2170	Oct	11
186	Jun	11
190	Jun	8
2730	Oct	11
7.03	Oct	11
183	Jun	12
13.50		
698		
454		
225		

1119			
1781			1978
470			2000
55500	Sep 30	1998	
186	Jun 11	2000	
190	Jun 8	2000	
59100	Sep 30	1998	
21.40	Sep 30	1998	
183	Jun 12	2000	
32.09			
2030			
838			
427			

LOCATION.--Lat $30^{\circ} 50^{\prime} 00^{\prime \prime}$, long $86^{\circ} 44^{\prime} 05^{\prime \prime}$, in SW $1 / 4$ sec. 22 , T. 4 N., R. 25 W., Okaloosa County, Blackwater River State Forest. Hydrologic unit 03140104 ,
near left bank on downstream side of bridge on State Highway 4, 0.3 mi downstream from Red Wash Branch, 3.8 mi northwest of Baker, and 35 mi upstream from mouth.
DRAINAGE AREA.--205 mi ${ }^{2}$
PERIOD OF RECORD.--March 1950 to September 1992; October 1996 to current year.
REVISED RECORDS.--WSP 1704: 1950 (M), 1951-52.
GAGE.--Water-stage recorder. Datum of gage is 60.5 ft above National Geodetic Vertical Datum of 1929 (from design datum of bridge curb furnished by Florida Department of Transportation).
REMARKS.--Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	147	129	108	145	222	165	173	117	79	87	138	84
2	132	198	107	142	203	148	e159	135	78	79	158	169
3	125	198	107	139	188	137	e148	136	76	75	165	174
4	126	156	106	139	176	131	e140	134	74	73	144	112
5	140	138	106	144	166	130	e134	133	74	70	119	91
6	135	130	109	142	159	126	e130	130	74	68	99	87
7	127	124	109	135	153	121	126	126	73	66	100	126
8	123	120	109	132	150	117	e120	124	72	64	93	165
9	131	117	109	144	147	114	e115	121	71	67	114	152
10	208	114	112	376	145	113	e110	119	70	74	99	117
11	338	113	113	598	142	114	108	116	69	71	96	98
12	272	111	113	417	139	125	106	113	68	76	87	87
13	211	111	144	313	136	131	105	110	67	81	80	91
14	178	110	203	257	213	121	114	109	69	78	75	147
15	155	110	169	218	324	115	123	111	77	73	72	113
16	143	108	143	194	291	127	122	106	93	71	70	90
17	134	107	130	179	227	149	114	103	112	73	68	81
18	128	107	129	169	192	144	109	100	106	67	67	76
19	123	106	258	163	174	133	104	96	132	69	68	74
20	121	107	312	164	161	217	101	93	105	67	67	72
21	121	118	320	167	150	248	99	94	89	73	72	88
22	119	130	437	155	142	196	97	94	83	77	77	165
23	117	123	345	169	136	165	96	95	79	73	70	148
24	114	117	267	318	132	147	104	90	77	68	67	128
25	113	115	225	411	128	136	136	85	79	66	65	102
26	112	118	198	330	125	132	147	82	78	65	64	91
27	111	116	181	267	144	167	136	80	112	64	64	84
28	110	113	171	237	208	192	131	81	118	63	65	81
29	108	110	162	235	197	172	124	99	115	64	65	77
30	107	109	155	246	---	199	120	86	100	65	65	74
31	106	-	150	240	---	204	-	82	---	96	63	-
MEAN	143	123	174	229	175	150	122	106	85.6	71.7	87.6	108
MAX	338	198	437	598	324	248	173	136	132	96	165	174
MIN	106	106	106	132	125	113	96	80	67	63	63	72
IN.	. 80	. 67	. 98	1.29	. 92	. 84	. 66	. 60	. 47	. 40	. 49	. 59

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1950-2000, BY WATER YEAR (WY)

e Estimated

LOCATION.--Lat $30^{\circ} 42^{\prime} 30^{\prime \prime}$, long $86^{\circ} 58^{\prime} 20^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{sec} .5$, T. 2 N., R. 27 W., Santa Rosa County, Hydrologic Unit 03140104, near center channel on downstream side of bridge on State Highway 191, 3 mi upstream from mouth, and 6.5 mi northeast of Milton.
DRAINAGE AREA.--237 mi ${ }^{2}$
PERIOD OF RECORD.--October 1938 to June 1979, October 1979 to September 1980 (gage heights and discharge measurements only). October 1980 to September 1991, October 1997 to August 1999, May to September 2000. Monthly discharge only for some periods, published in WSP 1304. Prior to October 1956, published as Coldwater Creek near Milton. October 1956 to September 1957, published as Big Coldwater River near Milton.
REVISED RECORDS.--WSP 892: 1939. WSP 1384: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 9.10 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 2, 1938, nonrecording gage at same site and datum.
REMARKS.--Records good, except for estimated daily discharges, which are fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	-	---	--	-	-	---	-	e297	210	255	e231	213
2	---	---	---	---	---	---	---	e283	209	239	e267	246
3	---		---	---	---	---	---	e276	209	233	e283	241
4	---	---	---	---	---	---	---	e264	207	231	e290	226
5	---	---	---	---	---	---	---	e260	207	225	e286	217
6	---	---	---	---	---	---	---	e255	215	221	e261	213
7	---	---	---	---	---	---	---	e249	213	220	e243	246
8	---	---	---	---	---	---	---	e242	207	219	e240	393
9	---	---	---	---	---	---	---	e231	207	219	e232	453
10	---	---	---	---	---	---	---	e230	208	224	e226	333
11	---	---	---	---	---	---	---	e226	207	222	230	281
12	---	---	---	---	---	---	---	e222	204	225	e233	256
13	---	---	-	---	---	---	---	e223	206	225	e240	284
14	---	---	---	---	---	---	---	e226	205	228	e242	353
15	---	---	---	---	---	---	---	225	226	221	e237	312
16	---	---	---	---	---	---	---	224	359	220	e231	260
17	---	---	---	---	---	---	---	222	375	221	e224	233
18	---	---	---	---	---	---	---	221	363	221	e221	226
19	---	---	---	---	---	---	---	222	388	220	e218	223
20	---	---	---	---	---	---	---	220	303	220	e225	220
21	---	---	---	---	---	---	---	220	272	236	e233	223
22	---	---	---	---	---	---	---	231	263	234	229	377
23	---	---	---	---	---	---	---	239	270	243	223	389
24	---	---	---	---	---	---	---	226	261	248	214	342
25	---	---	---	---	---	---	---	221	254	236	210	286
26	---	---	---	---	---	---	---	219	263	227	217	265
27	---	---	---	---	---	---	---	215	297	223	220	247
28	---	---	---	---	---	---	---	212	290	223	219	234
29	---	---	---	---	---	---	---	216	288	217	219	228
30	---	---	---	---	---	---	---	221	271	e210	214	224
31	---	---	---	---	---	---	---	212	---	e216	209	---
MEAN	---	---	---	---	---	---	---	234	255	227	234	275
MAX	---	---	---	---	---	---	---	297	388	255	290	453
MIN	---	---	---	---	---	---	---	212	204	210	209	213
IN.	-	---	---	---	---	-	--	1.14	1.20	1.10	1.14	1.29

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939-2000, BY WATER YEAR (WY)

MEAN	416	451	524	610	647	753	625	490	571	533	544
MAX	1325	1278	1383	1422	1159	2240	1330	1209	2526	1404	2476
(WY)	1976	1976	1954	1978	1962	1990	1961	1991	1989	1940	1975
MIN	178	206	207	273	308	253	261	223	216	227	208
(WY)	1969	1956	1956	1956	1957	1955	1968	1956	1968	2000	1956

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
WATER YEARS 1939 - 2000

559			
861			1976
307			1968
29700	Mar 17	1990	
158	Jun 10	1956	
171	Oct 28	1968	
36900	Mar 17	1990	
22.98	Mar 17	1990	
156	Jun 10	1956	
32.03			
894			
415			
263			

LOCATION.--Lat $30^{\circ} 40^{\prime} 50$ " , long $87^{\circ} 07^{\prime} 55^{\prime \prime}$, in $\mathrm{SE} 1 / 4 \mathrm{sec} .15$, T. 2 N, R. 29 W., Santa Rosa County, Hydrologic Unit 03140104 , near center of span on upstream side of bridge on State Highway 191, 0.6 mi downstream from Reader Creek, 6.4 mi northwest of Milton, and 10 mi upstream from mouth.
DRAINAGE AREA.--58.7 mi^{2}.
PERIOD OF RECORD.--January 1958 to July 1978; August 1978 to October 1983, 1992, 1993, 1997, 1998 (discharge measurements only); November 1999 to September 2000.
GAGE.--Water-stage recorder. Datum of gage is 47.45 ft above National Geodetic Vertical Datum of 1929.
REMARKS.--Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAIL'Y MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	e42	41	42	45	42	49	34	29	30	36	33
2	---	e42	42	42	44	41	45	35	30	29	60	32
3	---	e43	42	42	43	41	44	34	29	29	45	30
4	---	e44	42	44	43	41	46	34	29	29	37	30
5	---	e49	42	43	42	40	43	34	29	29	34	29
6	---	e47	42	42	42	40	42	34	31	28	33	30
7	---	e44	42	42	42	39	41	33	30	28	32	43
8	---	e43	42	42	42	39	41	33	29	28	33	70
9	---	e43	42	74	42	39	40	33	29	28	32	50
10	--	43	43	151	42	39	40	33	29	28	31	36
11	---	43	43	89	42	41	40	33	29	29	31	33
12	---	42	42	51	42	41	40	32	29	52	31	32
13	---	42	51	47	42	39	39	32	29	33	30	39
14	---	42	49	45	45	39	43	33	29	29	30	85
15	---	42	43	44	43	39	44	32	37	29	30	47
16	---	42	42	44	42	49	42	32	105	29	30	36
17	---	42	42	44	42	45	40	32	126	34	29	33
18	---	42	50	44	42	41	39	32	69	30	29	31
19	---	42	108	43	41	54	38	32	45	28	29	31
20	---	45	56	43	41	76	38	32	36	27	32	32
21	---	52	84	42	40	47	38	32	33	27	34	34
22	---	45	67	43	40	42	37	32	32	28	33	69
23	---	44	49	52	40	41	37	31	35	27	31	47
24	---	43	45	76	40	40	50	31	32	27	31	45
25	--	43	44	57	40	40	51	31	32	40	30	43
26	---	44	44	48	40	42	40	31	34	79	34	40
27	---	43	43	45	55	60	37	30	37	41	31	35
28	---	42	43	47	53	47	37	30	33	34	30	33
29	---	42	43	51	43	70	35	30	33	32	30	32
30	---	41	43	47	---	174	35	30	32	32	29	31
31	--	--	42	47	---	68	--	29	--	42	29	---
TOTAL	--	1303	1493	1613	1240	1536	1231	996	1161	1015	1016	1191
MEAN	---	43.4	48.2	52.0	42.8	49.5	41.0	32.1	38.7	32.7	32.8	39.7
MAX	---	52	108	151	55	174	51	35	126	79	60	85
MIN	--	41	41	42	40	39	35	29	29	27	29	29
AC-FT	---	2580	2960	3200	2460	3050	2440	1980	2300	2010	2020	2360
CFSM	---	. 74	. 82	. 89	. 73	. 84	. 70	. 55	. 66	. 56	. 56	. 68
IN.	---	. 83	. 95	1.02	. 79	. 97	. 78	. 63	. 74	. 64	. 64	. 75

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1958-2000, BY WATER YEAR (WY)

MEAN	71.1	66.8	73.8	81.7	82.8	86.0	84.5	70.0	86.2	72.1	81.6	79.7
MAX	151	158	130	189	143	145	166	149	275	127	224	212
(WY)	1976	1976	1962	1978	1961	1977	1960	1978	1970	1978	1975	1960
MIN	27.6	30.8	41.2	39.0	41.0	48.9	39.8	32.1	35.9	32.7	31.9	28.6
(WY)	1969	1969	1969	1969	1969	1968	1968	2000	1968	2000	1968	
SUMMMARY												

ANNUAL MEAN	80.0			
HIGHEST ANNUAL MEAN	125			1978
LOWEST ANNUAL MEAN	44.3		1968	
HIGHEST DAILY MEAN	2460	Sep	16	1960
LOWEST DAILY MEAN	26	Sep	10	1968
ANNUAL SEVEN-DAY MINIMUM	26	Sep	9	1968
MAXIMUM PEAK FLOW	4580	Jun	3	1970
MAXIMUM PEAK STAGE	12.97	Jun	3	1970
INSTANTANEOUS LOW FLOW	26	Sep	9	1968
ANNUAL RUNOFF (AC-FT)	57960			
ANNUAL RUNOFF (CFSM)	1.36			
ANNUAL RUNOFF (INCHES)	18.52			
10 PERCENT EXCEEDS	117			
50 PERCENT EXCEEDS	66			
90 PERCENT EXCEEDS	42			

e Estimated

LOCATION.--Lat $30^{\circ} 57^{\prime} 54^{\prime \prime}$, long $87^{\circ} 14^{\prime} 03^{\prime \prime}$, in NW $1 / 4 \mathrm{sec} .10$, T. 5 N., R. 30 W., Santa Rosa County, Hydrologic Unit 03140305 , on left bank 16 ft downstream from bridge on State Highway 4, 1.2 mi downstream from Escambia Creek, 1.7 mi east of Century, and 52 mi upstream from mouth.
DRAINAGE AREA.--3,817 mi^{2}.
PERIOD OF RECORD.--October 1934 to current year.
REVISED RECORDS.-- WSP 1384: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 28.34 ft above National Geodetic Vertical Datum of 1929 (Florida Department of Transportation bench mark). Prior to Jan. 13, 1940, nonrecording gage at same site and datum.
REMARKS.--No estimated daily discharges. Records good. Some gage-height fluctuation during periods of low flow are attributed to regulation by power plants at Point-A Dam, 85.4 mi and Gnatt Dam, 90.1 mi upstream from the gaging station.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1850, 37.8 ft , March 1929, present datum, discharge not determined, from information by U.S. Army Corps of Engineers, Mobile District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1500	1730	1470	2070	4040	3030	3410	1200	645	1430	771	553
2	1370	2620	1460	2040	3700	2980	3350	1170	646	1220	905	676
3	1300	3110	1480	2050	3410	2800	3280	1150	639	990	1160	709
4	1420	2730	1550	2080	3170	2840	2960	1110	607	820	1430	705
5	1480	2080	1470	2130	2990	2920	3020	1060	595	785	1270	804
6	1310	2070	1460	2110	2750	2480	2500	973	630	772	1030	760
7	1260	2090	1530	2220	2550	2400	2670	1060	611	670	1090	798
8	1240	1930	1510	1930	2450	2400	2470	899	579	623	1030	1110
9	1410	1890	1580	2130	2340	2670	2280	953	589	610	877	1170
10	2440	1730	1510	2580	2200	2800	2360	907	591	677	889	1070
11	4650	1570	1620	3850	2250	2800	1990	898	554	676	957	957
12	4940	1570	1660	4290	2180	2870	1690	868	546	660	978	890
13	3770	1570	1890	3760	2020	2430	1850	876	621	665	952	878
14	3630	1600	2350	3640	3060	2540	1740	910	584	626	780	785
15	3280	1490	2320	3220	4730	2860	1820	938	611	579	698	890
16	2970	1420	2150	3020	4250	2950	2430	988	779	573	636	758
17	2620	1430	1990	2730	3350	2960	1910	867	821	588	639	696
18	2190	1470	2240	2440	3040	2850	1950	853	942	639	586	694
19	2160	1360	3140	2410	2860	2830	1940	791	1000	577	555	645
20	1920	1480	4060	2350	2810	4080	1750	826	931	541	575	594
21	1780	1750	4540	2330	2460	5720	1710	734	887	585	572	627
22	1820	2030	5130	2250	2340	6190	1520	784	799	635	562	800
23	1740	1970	5300	2160	1950	6180	1380	836	830	710	623	955
24	1600	1890	4590	2810	2060	5570	1440	891	770	589	564	973
25	1520	1730	4000	3990	2040	5450	1600	795	820	544	536	814
26	1600	1640	3670	3970	1860	5150	1590	755	1100	543	533	745
27	1540	1630	3130	3640	2060	5000	1510	761	1660	549	518	668
28	1500	1660	2900	3700	2890	4960	1300	697	1520	575	564	679
29	1510	1570	2630	3730	3730	4590	1250	665	1450	591	609	634
30	1580	1540	2380	4030	---	4230	1370	682	1480	560	598	620
31	1480	-	2240	4230	---	3830	-	699	---	682	550	---
MEAN	2082	1812	2547	2900	2812	3657	2068	890	828	687	775	789
MAX	4940	3110	5300	4290	4730	6190	3410	1200	1660	1430	1430	1170
MIN	1240	1360	1460	1930	1860	2400	1250	665	546	541	518	553
IN.	. 63	. 53	. 77	. 88	. 79	1.10	. 60	. 27	. 24	. 21	. 23	. 23

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1935-2000, BY WATER YEAR (WY)

MEAN	3013	3223	5600	8509	10210	12590	11020	5846	4363	4025	3970
MAX	24310	14740	24600	31530	21160	30930	31430	19520	22500	20850	23560
(WY)	1999	1949	1954	1936	1965	1998	1980	1978	1970	1994	1975
MIN	647	1033	1157	1895	2596	1783	2068	890	828	687	775
(WY)	1969	1955	1955	1956	1989	1955	2000	2000	2000	2000	2000

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1935 - 2000
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAIIY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

4619		
30500	Mar	17
1110	Sep	26
1190	Sep	21
16.43		
8510		
3170		
1500		

1820		
6190	Mar 22	
518	Aug 27	
557	Aug 22	
6350	Mar 23	
10.60	Mar 23	
505	Aug 27	
6.49		
3650		
1520		
610		

$\begin{array}{rr}6271 & \\ 11690 & 1975 \\ 1820 & 2000\end{array}$
106000 Sep 301998
$518 \quad$ Aug 272000
$\begin{array}{rrrr}557 & \text { Aug } & 22 & 2000 \\ 117000 & \text { Sep } & 30 & 1998\end{array}$
24.35 Mar 181990

505 Aug 272000
22.32

14300
3670
1350

LOCATION.--Lat $30^{\circ} 40^{\prime} 12^{\prime \prime}$, long $87^{\circ} 16^{\prime} 00^{\prime \prime}$, in $\mathrm{SE}{ }^{1} / 4 \mathrm{sec} .20$, T. 2 N., R. 20 W., Escambia County, Hydrologic Unit 03140305 , near right bank on downstream side of bridge on State Highway 184, 4.1 mi northeast of Cottage Hill, and 5.5 mi southeast of Molino.
DRAINAGE AREA.--4, $147 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--April 1960 to September 1981 (gage heights and discharge measurements only). October 1983 to September 1987 (Daily discharges not computed for days with instantaneous gage heights below 1.5 ft), October 1987 to September 1994, October 1996 to current year.
GAGE.--Water-stage recorder. Elevation of gage is National Geodetic Vertical Datum of 1929.
REMARKS.--No estimated daily discharges. Records fair. Flow generally affected by tide when discharge is less than $5,000 \mathrm{ft}^{3} / \mathrm{s}$.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2240	2540	1910	2880	4730	3980	5650	1880	1110	1940	1230	958
2	2330	2670	1960	2740	4900	4080	5010	1870	1070	1880	1440	1000
3	2370	2610	2140	2760	4810	3860	4520	1840	1020	1720	1700	1170
4	2350	2980	2260	2770	4500	3710	4030	1850	1010	1490	1720	1210
5	2310	3100	2340	2280	3780	3430	3580	1870	1000	1320	1880	1170
6	2240	2750	2150	2430	3640	3530	3430	1740	1000	1260	1820	1180
7	2260	2450	2000	2480	3520	3360	3330	1640	970	1240	1590	1290
8	2440	2540	2070	2600	3380	3220	3010	1670	1000	1140	1540	1660
9	2630	2620	2170	3000	3130	3240	2550	1620	972	1050	1470	1890
10	2870	2640	2210	3600	3160	3390	2570	1660	983	1160	1380	1820
11	3260	2550	2020	3430	3190	3540	2780	1580	978	1200	1460	1660
12	3870	2270	2260	3780	3180	3210	2670	1540	987	1180	1580	1550
13	4650	2240	2610	4510	3170	3230	2390	1520	964	1100	1460	1440
14	5020	2210	2470	4200	3350	3120	2400	1430	1020	1090	1450	1470
15	4620	2120	2570	4280	3410	3180	2450	1400	1050	1030	1280	1350
16	4070	2050	2420	4110	4390	3720	2440	1420	1560	1010	1160	1420
17	3530	2000	2480	3880	5170	3750	2670	1420	1770	1020	1050	1280
18	3060	2070	2620	3530	5270	3630	2410	1330	1890	1020	1050	1190
19	2710	2160	3200	3280	4650	3980	2390	1280	2220	1050	1010	1150
20	2470	2190	3290	3020	3620	3990	2440	1230	1910	980	1000	1120
21	2340	2380	4170	2660	3350	4050	2300	1250	1640	945	999	1150
22	2260	2530	4660	2970	3320	4680	2110	1190	1470	1080	1030	1370
23	2250	2550	5100	3310	3280	5590	2120	1190	1340	1100	980	1470
24	2120	2430	5450	3200	3030	6410	2350	1260	1350	1130	1030	1520
25	2120	2430	5620	3050	3010	6750	2160	1280	1310	1030	1020	1530
26	2100	2310	5330	3470	3030	6740	2060	1240	1350	971	977	1360
27	2150	2170	4780	4180	3030	6670	2020	1160	1690	974	926	1270
28	2130	2080	4170	4590	3020	6440	2050	1160	2050	954	964	1190
29	2190	2060	3610	4800	3350	6320	1870	1110	2070	986	1020	1130
30	2260	1860	3260	4550	---	6950	1800	1080	1950	999	1010	1070
31	2330	---	3100	4460	---	6560	---	1060	---	1160	1010	---
MEAN	2760	2385	3110	3445	3702	4462	2785	1444	1357	1168	1266	1335
MAX	5020	3100	5620	4800	5270	6950	5650	1880	2220	1940	1880	1890
MIN	2100	1860	1910	2280	3010	3120	1800	1060	964	945	926	958
IN.	. 77	. 64	. 86	. 96	. 96	1.24	. 75	. 40	. 37	. 32	. 35	. 36

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988-2000, BY WATER YEAR (WY)

MEAN	5203	4428	6203	10240	10900	14870	7933	5380	5466	372	3416
MAX	32570	8956	18920	24210	19080	37410	13870	14530	19160	22110	9523
(WY)	1999	1993	1993	1998	1992	1990	1989	1991	1989	1994	1994
MIN	1521	1961	2212	3126	2650	4462	2785	1444	1357	1168	1266
(WY)	1988	1991	1991	1989	1989	2000	2000	2000	2000	2000	2000

SUMIMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR

5342		2433		
27300	Mar 19	6950	Mar	30
1860	Nov 30	926	Aug 27	
2030	Nov 27	979	Jun	7
		7200	Mar 30	
		4.07	Mar 30	
		926	Aug 27	
17.49		7220		
10200		2190		
3610		1030		
2180				

WATER YEARS 1988 - 2000

7008			
10680			1990
2433		2000	
111000		Mar 22	1990
926		Aug 27 2000	
979		Jun	7
2000			
113000		Mar 23	1990
15.72	Mar 23	1990	
926		Aug 27 2000	
22.96			
16100			
3990			
1910			

LOCATION.--Lat $30^{\circ} 26^{\prime} 53^{\prime \prime}$, long $87^{\circ} 17^{\prime} 26^{\prime \prime}$, in SE $1 / 4$ sec.13, T. 2 S., R. 30 W., Escambia County, Hydrologic Unit 03140107 , near mid channel on downstream side of eastbound bridge on U.S. Highway $90,0.3 \mathrm{mi}$ upstream from Turner's Creek, 4.5 mi upstream and 5.3 mi northwest of City Hall in Pensacola.
DRAINAGE AREA.-- $10.8 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--February 1958 to March 1960; October 1987 to September 1991, October 1998 to current year.
REVISED RECORDS.--WDR FL-88-4: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 11.21 ft above National Geodetic Vertical Datum of 1929. Feb. 12, 1958 to Mar. 17, 1960, water-stage recorder 100 ft upstream at present datum.
REMARKS.--No estimated daily discharges. Records good.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	23	14	17	17	7.9	17	8.5	6.4	11	27	8.8
2	17	21	14	17	17	7.5	15	8.7	6.4	8.8	22	14
3	18	17	14	17	16	7.6	15	8.8	6.3	8.1	15	19
4	27	16	14	17	16	7.5	17	9.0	6.2	8.0	13	14
5	28	16	16	16	16	7.5	16	9.3	6.2	7.6	11	10
6	21	16	16	16	16	7.3	15	9.3	6.3	6.7	10	9.1
7	19	16	14	16	15	7.2	14	8.9	5.6	6.1	9.4	42
8	51	15	14	16	15	7.1	14	8.5	4.9	5.9	8.9	310
9	55	15	15	19	15	7.2	12	8.0	4.9	6.5	9.4	75
10	35	15	17	28	15	7.2	12	7.8	5.2	6.4	9.5	28
11	28	15	15	21	15	7.4	12	8.0	5.0	6.3	9.6	21
12	24	15	15	19	15	7.3	12	7.6	4.9	6.8	8.9	18
13	23	15	27	19	15	7.1	12	11	5.0	6.4	7.8	16
14	22	15	19	19	20	7.1	19	13	5.0	5.7	7.2	17
15	20	15	18	17	18	7.5	17	9.1	11	5.8	8.0	20
16	20	14	23	17	17	16	15	7.5	27	5.3	8.2	16
17	19	14	28	16	13	13	14	7.7	47	5.7	7.0	13
18	18	14	75	16	8.3	12	13	7.5	20	5.4	6.7	13
19	17	15	60	16	8.1	15	12	7.6	12	4.7	6.9	12
20	18	18	48	16	7.9	14	12	7.6	10	5.1	8.3	13
21	17	20	71	15	7.8	12	11	12	9.3	5.4	11	13
22	17	17	44	16	7.7	11	10	11	10	6.3	12	13
23	17	16	31	27	7.8	11	11	9.3	10	5.9	9.7	15
24	17	15	25	32	7.8	11	18	8.1	9.2	5.3	8.2	13
25	17	15	22	23	7.7	11	13	7.8	9.5	5.7	7.5	12
26	16	16	20	20	7.7	24	10	7.6	26	6.3	7.4	11
27	16	15	19	18	10	27	10	7.4	15	5.8	7.1	10
28	16	15	18	20	8.4	16	10	7.4	15	6.2	7.4	10
29	16	15	18	19	7.9	44	10	7.4	22	5.2	6.9	9.9
30	16	14	17	18	--	47	9.2	6.6	15	25	6.2	9.8
31	16	-	17	18	---	21	-	6.3	---	37	6.1	---
TOTAL	677	478	778	581	368.1	415.4	397.2	264.3	346.3	246.4	303.3	805.6
MEAN	21.8	15.9	25.1	18.7	12.7	13.4	13.2	8.53	11.5	7.95	9.78	26.9
MAX	55	23	75	32	20	47	19	13	47	37	27	310
MIN	16	14	14	15	7.7	7.1	9.2	6.3	4.9	4.7	6.1	8.8
AC-FT	1340	948	1540	1150	730	824	788	524	687	489	602	1600
CFSM	2.02	1.48	2.32	1.74	1.18	1.24	1.23	. 79	1.07	. 74	. 91	2.49
IN.	2.33	1.65	2.68	2.00	1.27	1.43	1.37	. 91	1.19	. 85	1.04	2.77

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1958-2000, BY WATER YEAR (WY)

MEAN	34.0	30.7	28.9	31.7	30.2	34.3	29.3	28.9	30.1	32.4	30.2
MAX	49.9	48.6	39.5	40.8	51.5	46.3	49.2	43.6	46.9	55.4	50.1
(WY)	1959	1959	1959	1959	1988	1958	1959	1991	1989	1958	1988
MIN	19.6	14.9	15.7	18.7	12.7	13.4	13.2	8.53	11.5	7.95	9.78
(WY)	1991	1991	1991	2000	2000	2000	2000	2000	2000	2000	2000

SUMMARY STATISTICS

```
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (CFSM)
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
```

FOR 1999 CALENDAR YEAR

8641	
23.7	
110	Mar 14
12	May 22
14	May 16
17140	
2.19	
29.76	
36	
20	
15	

FOR 2000 WATER YEAR

5660.6		
15.5		
310	Sep	8
4.7	Jul	19
5.0	Jun	8
462	Sep	8
5.08	Sep	8
4.1	Jul	19
11230		
1.43		
19.50		
23		
14		
6.4		

WATER YEARS 1958 - 2000

29.5				
41.8				1959
15.5			2000	
310		Sep	8	2000
4.7		Jul	19	2000
5.0		Jun	8	2000
701		Mar	16	1990
5.51		Mar	16	1990
4.1		Jul	19	2000
21360				
2.73				
37.09				
49				
27				
15				

LOCATION.--Lat $30^{\circ} 29^{\prime} 53^{\prime \prime}$, long $87^{\circ} 20^{\prime} 09^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{sec} .22$, T. 1 S., R. 31 W., Escambia County, Hydrologic Unit 03140107 , near left bank on downstream side of bridge on U.S. Highway 90, 1.8 mi upstream from Eightmile Creek, 4.0 mi upstream from mouth and 5.6 mi northwest of Pensacola High School in West Pensacola.
DRAINAGE AREA.--27.8 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1987 to current year.
GAGE.--Water-stage recorder. Datum of gage is 10.00 ft above National Geodetic Vertical Datum of 1929.
REMARKS.--Records good. Discharges are increased by about $30 \mathrm{ft}^{3} / \mathrm{s}$ from a paper mill located about 10 mi upstream.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	55	101	59	71	63	59	80	54	46	54	77	62
2	53	78	61	72	59	55	75	56	48	50	72	126
3	56	62	62	72	51	51	77	56	48	49	137	103
4	60	59	63	72	53	50	74	54	48	51	171	65
5	58	58	72	68	54	50	62	54	49	48	75	57
6	57	57	66	68	56	50	65	54	49	47	60	55
7	55	58	63	67	57	50	62	53	46	51	55	157
8	72	58	64	70	55	49	64	52	48	46	55	609
9	105	58	66	97	53	54	59	51	49	48	51	279
10	112	58	70	192	59	58	61	52	49	49	55	120
11	106	60	69	108	56	58	59	51	48	49	57	107
12	76	60	67	84	58	51	56	52	47	48	54	84
13	71	59	86	81	58	51	56	57	47	49	50	72
14	66	59	73	78	67	48	66	62	47	47	50	72
15	62	58	68	73	53	52	71	51	52	48	49	82
16	61	59	68	71	52	84	66	53	105	47	50	63
17	60	59	65	72	50	74	62	53	169	51	49	56
18	58	60	e90	68	52	59	60	52	76	49	50	56
19	54	63	e120	67	54	74	57	52	66	45	50	59
20	50	69	84	67	53	68	60	52	61	48	58	54
21	48	74	180	65	52	58	55	53	57	49	64	65
22	48	67	124	68	52	55	53	52	54	53	55	63
23	47	65	86	66	55	53	55	51	56	48	51	73
24	51	65	81	185	58	50	64	51	54	46	54	63
25	56	67	75	101	54	52	59	52	53	46	50	59
26	58	66	73	75	56	84	56	52	62	44	51	68
27	59	65	74	70	68	103	58	51	60	48	50	56
28	59	66	70	69	65	68	58	51	60	46	52	52
29	59	64	68	68	62	129	57	50	61	46	50	52
30	60	61	68	64	---	317	55	47	58	64	49	51
31	58	---	72	60	---	104	---	45	---	97	47	---
MEAN	62.9	63.8	77.6	80.9	56.4	71.5	62.1	52.5	59.1	50.4	61.2	98.0
MAX	112	101	180	192	68	317	80	62	169	97	171	609
MIN	47	57	59	60	50	48	53	45	46	44	47	51

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988-2000, BY WATER YEAR (WY)

MEAN	89.2	101	91.0	118	106	143	96.3	81.0	103	112	93.1	118		
MAX	223	311	199	239	153	332	246	168	183	192	1989	1994	1995	1998
(WY)	1996	1996	1996	1998	1997	1998	1996	57.6	50.4	58.8	53.1			
MIN	52.5	47.4	53.6	67.5	56.4	71.5	62.1	51.1	57					
(WY)	1991	1991	1991	1989	2000	2000	2000	1988	1988	2000	1990	1990		

SUMMARY STATISTICS
FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1988 - 2000
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

74.8			
408	Mar	14	
47	Sep	27	
50	Sep	26	
100			
66			
56			

66.4		
609	Sep	8
44	Jul	26
46	Jul	23
781	Sep	8
7.85	Sep	8
44	Jul	26
83		
58		
49		

104			
160			1998
66.4		2000	
8000		Sep 28	1998
33	Aug 24	1989	
42	Nov 2	1990	
12800	Sep 28	1998	
16.94	Sep 28	1998	
29		Aug 25	1989
144			
73			
57			

e Estimated

LOCATION.--Lat $30^{\circ} 58^{\prime} 42^{\prime \prime}$, long $87^{\circ} 31^{\prime} 41^{\prime \prime}$, in $\mathrm{SE}^{1} / 4$ sec. 3 , T. 5 N., R. 5 E., Escambia County, Hydrologic Unit 03140106 , at bridge on Nokomis Road, 0.8 mi downstream from Rocky Creek, 1.4 mi below Alabama-Florida State Line, 2.1 mi upstream from Reedy Creek, and 6.0 mi west of Bratt.
DRAINAGE AREA.-- $26.5 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1998 to current year.
GAGE.--Water-stage recorder. Elevation of gage is National Geodetic Vertical Datum of 1929, from topographic map.
REMARKS.--No estimated daily discharges. Records good.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge measured, $3,070 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 29, 1998, gage height, 184.11 ft .
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	24	38	23	22	24	20	19	16	14	15	14	16
2	23	32	23	22	23	19	18	16	14	14	15	18
3	23	25	23	23	23	19	18	16	14	14	14	18
4	27	24	23	29	23	20	20	16	14	14	15	14
5	24	24	23	25	22	19	18	16	15	14	13	13
6	23	23	23	24	21	19	18	16	16	14	13	14
7	22	22	23	23	22	19	18	15	15	14	13	21
8	24	23	23	23	22	19	18	15	15	14	13	22
9	85	24	23	23	22	19	17	16	14	30	13	17
10	75	24	27	47	22	19	17	16	14	50	13	14
11	46	24	24	29	22	18	17	16	14	17	14	13
12	31	24	25	25	22	18	17	15	14	15	13	14
13	28	23	35	24	22	18	20	19	14	14	12	17
14	27	23	28	23	136	18	72	21	14	13	12	14
15	25	23	25	22	31	18	26	16	17	13	13	13
16	25	23	24	22	23	25	20	16	20	13	13	12
17	24	23	23	22	21	23	18	16	19	13	13	12
18	23	23	38	22	21	19	18	15	20	13	13	12
19	24	24	72	23	20	25	17	15	17	13	12	12
20	24	41	28	23	19	32	17	15	16	13	12	12
21	24	36	75	22	19	21	16	15	15	13	13	12
22	23	26	39	22	19	20	16	18	15	13	13	13
23	23	25	27	29	19	19	16	16	15	12	13	13
24	23	24	24	33	19	18	80	15	14	12	13	12
25	23	24	24	27	19	18	49	15	14	13	13	13
26	23	23	23	24	19	19	21	15	16	13	13	14
27	23	23	23	23	27	24	18	15	17	13	13	13
28	23	23	23	25	23	20	18	14	15	13	14	13
29	23	23	23	25	20	21	17	15	16	13	13	12
30	23	23	23	26	---	23	16	14	18	12	13	12
31	22	---	23	25	---	20	---	15	---	13	13	---
TOTAL	880	760	883	777	745	629	690	489	465	470	407	425
MEAN	28.4	25.3	28.5	25.1	25.7	20.3	23.0	15.8	15.5	15.2	13.1	14.2
MAX	85	41	75	47	136	32	80	21	20	50	15	22
MIN	22	22	23	22	19	18	16	14	14	12	12	12
AC-FT	1750	1510	1750	1540	1480	1250	1370	970	922	932	807	843
CFSM	1.07	. 96	1.07	. 95	. 97	. 77	. 87	. 60	. 58	. 57	. 50	. 53
IN.	1.24	1.07	1.24	1.09	1.05	. 88	. 97	. 69	. 65	. 66	. 57	. 60

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999-2000, BY WATER YEAR (WY)

| MEAN | 51.5 | 42.5 | 35.9 | 42.6 | 30.6 | 55.9 | 26.7 | 22.2 | 49.1 | 39.6 | 20.7 | 20.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MAX | 74.6 | 59.7 | 43.3 | 60.1 | 35.8 | 91.5 | 30.4 | 28.6 | 82.6 | 64.1 | 28.3 | 26.7 |
| (WY) | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 |
| MIN | 28.4 | 25.3 | 28.5 | 25.1 | 25.7 | 20.3 | 23.0 | 15.8 | 15.5 | 15.2 | 13.1 | 14.2 |
| (WY) | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 |

SUMMARY STATISTICS

```
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
instantanEOUS pEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (CFSM)
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
5 0 ~ P E R C E N T ~ E X C E E D S ~
90 PERCENT EXCEEDS
```

FOR 1999 CALENDAR YEAR
16166

16166		20.8		
44.3				
871	Mar 14	136	Feb 14	
21	Sep 26	12	Jul 23	
22	Sep 14	12	Sep 15	
		215	Apr 24	
		179.63	Apr 24	
32070		11	Sep 18	
1.67		15110		
22.69		10.79		
63		26		
28		19		
23		13		

WATER YEARS 1999 - 2000

36.5			
52.3			1999
20.8			2000
871	Mar 14	1999	
12	Jul 23	2000	
12	Sep 15	2000	
2060	Jun 26	1999	
183.39	Jun 26	1999	
11	Sep 18	2000	
26470			
1.38			
18.73			
54			
24			
14			

LOCATION.--Lat $30^{\circ} 41^{\prime} 25^{\prime \prime}$, long $87^{\circ} 26^{\prime} 25^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{sec} .23$, T. 4 S., R. 6 E., Baldwin County, Ala., Hydrologic Unit 03140106 , on right bank 25 ft downstream from bridge on county road, $1,000 \mathrm{ft}$ downstream from Alligator Creek, 0.5 mi southwest of Barrineau Park, and 27 mi upstream from mouth.
DRAINAGE AREA.--394 mi ${ }^{2}$.
PERIOD OF RECORD.--June 1941 to current year.
REVISED RECORDS.--WSP 1384: Drainage area. WRD FL-76-4: 1973-75 (M).
GAGE.--Water-stage recorder. Datum of gage is 25.77 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 22, 1949, nonrecording gage at same site and datum.
REMARKS.--Records good.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 15,1929, reached a stage of 25.7 ft present datum, from information by local resident (discharge not determined).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAIL'Y MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	458	369	332	381	431	366	526	268	202	338	222	190
2	412	e450	329	377	410	347	429	e257	200	297	324	221
3	370	e425	329	373	392	335	381	e250	198	257	311	226
4	353	e400	332	374	377	329	361	e246	196	237	272	232
5	369	e385	333	383	365	323	371	e242	196	223	257	215
6	359	e360	338	382	355	319	382	e238	206	211	234	200
7	343	e350	338	370	348	312	363	e233	220	203	215	271
8	335	e345	336	363	344	306	342	e228	209	199	212	431
9	484	e340	338	375	343	303	322	e224	203	223	215	466
10	1070	e335	342	438	340	301	309	e220	198	231	243	369
11	1640	e330	362	532	337	304	301	e216	194	262	326	335
12	1540	e325	393	526	335	357	297	e213	191	233	286	296
13	1080	e320	497	503	334	329	291	e210	191	207	246	447
14	796	e325	532	483	373	312	307	314	192	196	222	459
15	624	e324	483	432	539	305	397	325	239	191	206	372
16	502	318	427	395	533	353	354	281	313	198	196	308
17	438	317	395	376	497	390	318	250	314	197	190	270
18	403	317	402	365	439	380	300	236	366	186	184	246
19	382	319	725	359	396	380	290	230	486	181	180	231
20	370	354	760	355	371	435	281	225	360	178	178	224
21	363	479	946	348	351	431	276	221	293	177	194	223
22	356	475	1060	342	338	380	274	226	263	204	185	243
23	348	425	901	367	330	347	270	230	242	192	181	247
24	339	393	778	466	326	327	274	228	233	184	179	240
25	333	377	656	528	322	316	312	222	228	181	176	231
26	330	366	549	483	319	317	357	216	235	180	174	230
27	328	356	473	438	377	349	315	213	262	182	171	230
28	325	348	433	415	414	370	306	210	316	187	172	219
29	323	341	411	415	395	454	298	215	345	190	197	212
30	321	336	396	417	---	925	280	210	337	189	191	206
31	320	---	388	434	--	669	---	206	---	194	180	---
MEAN	517	363	494	413	380	376	329	236	254	210	217	276
MAX	1640	479	1060	532	539	925	526	325	486	338	326	466
MIN	320	317	329	342	319	301	270	206	191	177	171	190
IN.	1.51	1.03	1.45	1.21	1.04	1.10	. 93	. 69	. 72	. 61	. 63	. 78

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941-2000, BY WATER YEAR (WY)

MEAN	518	616	719	955	977	1125	1020	714	668	701	707	739
MAX	2519	1865	2084	2636	2364	2791	3179	2402	2394	2023	2938	3460
(WY)	1996	1990	1954	1998	1990	1990	1983	1991	1989	1997	1975	1998
MIN	197	246	302	339	343	269	283	236	238	210	217	213
(WY)	1969	1956	1955	1957	1957	1955	1968	2000	1968	2000	2000	1968

SUMMARY STATISTICS
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1999 CALENDAR YEAR
FOR 2000 WATER YEAR
WATER YEARS 1941 - 2000

638		339	787			
				1372		1998
				339		2000
6200	Jun 28	1640	Oct 11	40800	Sep 29	1998
305	Sep 26	171	Aug 27	171	Aug 27	2000
310	Sep 22	177	Aug 22	177	Aug 22	2000
		1780	Oct 11	44000	Sep 29	1998
		6.42	Oct 11	26.30	Sep 29	1998
		171	Aug 27	171	Aug 27	2000
22.00		11.71		27.13		
1060		466		1430		
479		326		511		
336		196		296		

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at crest-stage and flood-hydrograph partial-record stations are presented in a table of annual maximum stage and discharge. Discharge measurements made at miscellaneous sites for both low flows and high flows are given in a second table.

Crest-stage and flood-hydrograph partial-record stations

The following table contains annual maximum discharges for crest-stage and flood hydrograph stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A flood hydrograph station is a continual-record station that records the river stage of storm events above a base stage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum discharge at crest-stage stations

Station No.	Station Name	Location	Drainage area $\left(\mathrm{mi}^{2}\right)$	$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { Record } \end{aligned}$	Annual Maximum		
					Water year	Gage height (feet)	Discharge (ft ${ }^{3} / \mathrm{s}$)
OCKLAWAHA RIVER BASIN							
02240934	Unnamed Sink Drain near Flemington, Fla.	Lat $29^{\circ} 24^{\prime} 15^{\prime \prime}$, long $82^{\circ} 20^{\prime} 30^{\prime \prime}$, in $\mathrm{SE}^{1 / 4}$ sec. 30, T. 12 S., R. 20 E., Marion County, Hydrologic Unit 03080102, at upstream side of culvert at County Road 318, 2.7 mi west of Flemington, and 6.2 mi southeast of Williston.	0.14	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{array}{r} 1.74 \\ <1.00 \\ 3.81 \\ 4.36 \\ 1.11 \end{array}$	a
022409424	Moores Pond Tributary near Micanopy, Fla.	Lat $29^{\circ} 28^{\prime} 01^{\prime \prime}$, long $82^{\circ} 18^{\prime} 52^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 9, T. 12 S., R. 20 E., Marion County, Hydrologic Unit 03080102, at upstream side of culvert at County Road 329, 3.1 mi southwest of Micanopy, and 4.2 mi north of Flemington.	0.41	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 5.33 \\ & 7.12 \\ & 5.97 \\ & 5.60 \end{aligned}$	a
ST. JOHNS RIVER BASIN BELOW OCKLAWAHA RIVER							
02245449	South Fork Black Creek Tributary near Penny Farms, Fla.	Lat $29^{\circ} 58^{\prime} 41^{\prime \prime}$, long $81^{\circ} 52^{\prime} 52^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 15, T. 6 S., R. 24 E., Clay County, Hydrologic Unit 03080103, at upstream side of culvert on State Road 16, 1.0 mi east of junction with State Road 21, and 4.4 mi west of Penny Farms.	0.32	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1.24 \\ & 3.32 \\ & 1.68 \\ & 2.01 \\ & 1.50 \end{aligned}$	$\begin{gathered} 28 \\ 135 \\ 56 \\ 76 \\ 45 \end{gathered}$
022455734	Bull Creek Tributary near Middleburg, Fla.	Lat $30^{\circ} 00^{\prime} 44^{\prime \prime}$, long $81^{\circ} 55^{\prime} 52^{\prime \prime}$, in $\mathrm{SW}^{1 / 4}$ sec. 32, T. 5 S., R. 24 E., Clay County, Hydrologic Unit 03080103, at upstream side of culvert on County Road 215, 2.9 mi south of junction with State Road 21, 3.5 mi north of junction of County Road 215 with State Road 16, and 5.4 mi southwest of Middleburg.	0.16	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1.31 \\ & 2.41 \\ & 2.11 \\ & 1.36 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 18 \\ & 56 \\ & 41 \\ & 20 \\ & 20 \end{aligned}$
02245606	Calf Branch Tributary near Middleburg, Fla.	Lat $30^{\circ} 01^{\prime} 21^{\prime \prime}$, long $81^{\circ} 53^{\prime} 53^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 33, T. 5 S., R. 24 E., Clay County, Hydrologic Unit 03080103, at upstream side of culvert on State Road 21, 0.7 mi south of junction with County Road 215, 3.1 mi southwest of Middleburg, and 3.6 mi north of junction of State Road 21 with State Road 16.	0.21	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{array}{r} 2.07 \\ 6.48 \\ 2.67 \\ <1.00 \\ <1.00 \end{array}$	$\begin{gathered} 45 \\ 160 \\ 65 \\ <12 \\ <12 \end{gathered}$

Station No.	Station Name	Location	Drainage area $\left(m i^{2}\right)$	```Period of Record```	Annual Maximum		
					Water year	Gage height (feet)	Discharge ($\mathrm{ft}^{3} / \mathrm{s}$)
WITHLACOOCHEE RIVER BASIN							
02312522	Trailer Park Drain near Brooksville, Fla.	Lat $28^{\circ} 30^{\prime} 18^{\prime \prime}$, long $82^{\circ} 22^{\prime} 14^{\prime \prime}$, in $\mathrm{NW}^{1 / 4}$ sec. 12, T. 23 S., R. 19 E., Hernando County, HydroIogic Unit 03100208, at upstream side of culvert on County Road 581 , and 3.9 mi southeast of Court House at Brooksville.	0.21	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1.70 \\ & 1.41 \\ & 3.69 \\ & 1.89 \\ & 2.52 \end{aligned}$	a
02312524	Tributary to Unnamed Sink near Brooksville, Fla.	Lat $28^{\circ} 31^{\prime} 01^{\prime \prime}$, long $82^{\circ} 20^{\prime} 04^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 6, T. 23 S., R. 20 E., Hernando County, Hydrologic Unit 03100208, at upstream side of culvert on Cedar Lane, 1.3 mi south of junction with U.S. Highway 98 , and 4.2 mi southwest of Court House at Brooksville.	0.22	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 2.02 \\ & 5.00 \\ & 3.12 \\ & 2.24 \end{aligned}$	a
SUWANNEE RIVER BASIN ABOVE WITHLACOOCHEE RIVER							
02315534	Rocky Creek Tributary near Wellborn, Fla.	Lat $30^{\circ} 18^{\prime} 51^{\prime \prime}$, long $82^{\circ} 49^{\prime} 50^{\prime \prime}$, in $\mathrm{SE}^{1 / 4}$ sec. 17, T. 2 S., R. 15 E., Suwannee County, Hydrologic Unit 03110201, at bridge on County Road 136, 5.3 mi northwest of Houston, 5.5 mi west of White Springs, and 6.0 mi northwest of Wellborn.	1.2	$\begin{aligned} & 1969-75 \\ & 1996-97 \\ & 1999-00 \end{aligned}$	$\begin{aligned} & 1996 \\ & 1997 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{array}{r} 5.53 \\ 7.42 \\ <4.60 \\ <4.60 \end{array}$	$\begin{gathered} 91 \\ 244 \\ <15 \\ <15 \end{gathered}$
023156044	Sugar Creek Tributary near Suwannee Springs, Fla.	Lat $30^{\circ} 24^{\prime} 29^{\prime \prime}$, long $82^{\circ} 55^{\prime} 13^{\prime \prime}$, in $\mathrm{SE}^{1 / 4}$ sec. 9, T. 1 S., R. 14 E., Hamilton County, Hydrologic Unit 03110201, at upstream side of culvert on State Road 132, and 1.3 mi northeast of Suwannee Springs.	0.06	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{array}{r} 1.48 \\ 1.96 \\ 3.25 \\ <1.08 \\ <1.08 \end{array}$	$\begin{aligned} & 3.4 \\ & 8.5 \\ & 3.0 \\ & <1 \\ & <1 \end{aligned}$
SANTA FE RIVER BASIN							
02320978	New River Tributary near Raiford, Fla.	Lat $30^{\circ} 02^{\prime} 49^{\prime \prime}$, long $82^{\circ} 15^{\prime} 58^{\prime \prime}$, in $\mathrm{SE}^{1 / 4}$ sec. 23, T. 5 S., R. 20 E., Union County, HydroIogic Unit 03110206, at upstream side of culvert at County Road 237, 0.2 mi south of State Road 121,1.3 mi southwest of Raiford, and 3.9 mi northeast of the junction of State Roads 121 and 100 at Lake Butler.	0.31	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{array}{r} 1.19 \\ 2.66 \\ 3.95 \\ <1.00 \\ 1.78 \end{array}$	$\begin{gathered} 7.7 \\ 25 \\ 57 \\ <3.0 \\ 19 \end{gathered}$
02321527	Tributary To Santa Fe River Tributary near Worthington Springs, Fla.	Lat $29^{\circ} 56^{\prime} 43^{\prime \prime}$, long $82^{\circ} 28^{\prime} 08^{\prime \prime}$, in NW $1 / 4$ sec. 25, T. 6 S., R. 18 E., Union County, HydroIogic Unit 03110206, at upstream side of culvert at State Road 18, 0.26 mi west of State Road 121, and 2.9 mi northwest of Worthington Springs.	0.27	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1.86 \\ & 2.50 \\ & 6.06 \\ & 1.61 \\ & 1.65 \end{aligned}$	$\begin{gathered} 17 \\ 37 \\ 238 \\ 10 \\ 11 \end{gathered}$
02321793	Providence Branch at Providence, Fla.	Lat $30^{\circ} 00^{\prime} 29^{\prime \prime}$, long $82^{\circ} 33^{\prime} 36^{\prime \prime}$, in $\mathrm{SW}^{1 / 4}$ sec. 31, T. 5 S., R. 18 E., Union County, Hydrologic Unit 03110206, at upstream side of culvert on County Road 245, 0.3 mi north of the junction with State Road $238,0.5 \mathrm{mi}$ south of the Olustee River, and 0.8 mi west of Providence.	0.94	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{array}{r} 2.52 \\ 3.13 \\ 4.75 \\ 2.03 \\ <1.69 \end{array}$	$\begin{gathered} 81 \\ 134 \\ 320 \\ 41 \\ <23 \end{gathered}$

Station No.	Station Name	Location	Drainage area $\left(m i^{2}\right)$	Period of Record	Annual Maximum		
					Water year	Gage height (feet)	Discharge (ft ${ }^{3} / \mathrm{s}$)
SANTA FE RIVER BASIN--Continued							
02321795	Disappearing Branch near Providence, Fla.	Lat $30^{\circ} 02^{\prime} 34^{\prime \prime}$, long $82^{\circ} 34^{\prime} 01^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 34, T. 5 S., R. 17 E., Columbia County, Hydrologic Unit 03110206, at upstream side of culvert on County Road $245,1.9$ mi north of the Olustee River, 2.7 mi north of the junction with State Road 238, and 3.0 mi northwest of Providence.	0.81	1996-00 Discontinued	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{array}{r} <2.00 \\ 4.66 \\ <2.00 \\ <2.00 \\ <2.00 \end{array}$	$\begin{gathered} <2 \\ 114 \\ <2 \\ <2 \\ <2 \end{gathered}$
02322049	Bad Dog Run near Alachua, Fla.	Lat $29^{\circ} 49^{\prime} 32^{\prime \prime}$, long $82^{\circ} 28^{\prime} 06^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 1, T. 8 S., R. 18 E., Alachua County, HydroIogic Unit 03110206, at upstream side of culvert at County Road 239, 2.6 mi northeast of Alachua.	0.49	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 16.72 \\ & 14.65 \\ & 15.71 \\ & 14.03 \\ & 14.43 \end{aligned}$	$\begin{gathered} 185 \\ 35 \\ 102 \\ 9.1 \\ 25 \end{gathered}$
02322050	Shiloh Run near Alachua, Fla.	Lat $29^{\circ} 49^{\prime} 06^{\prime \prime}$, long $82^{\circ} 28^{\prime} 21^{\prime \prime}$, in $\mathrm{SW}^{1 / 4}$ sec. 1, T. 8 S., R. 18 E., Alachua County, HydroIogic Unit 03110206, 6 ft upstream from culvert on County Road 239, 0.7 mi above mouth, and 2.8 mi southeast of Alachua.	0.32	$\begin{aligned} & 1983-87 \\ & 1996-00 \end{aligned}$	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{array}{r} <1.00 \\ <1.00 \\ 1.13 \\ <1.00 \\ <1.00 \end{array}$	$\begin{gathered} <20 \\ <20 \\ 25 \\ <20 \\ <20 \end{gathered}$
AUCILLA RIVER BASIN							
02326372	Palmer Mill Branch at Monticello, Fla.	Lat $30^{\circ} 23^{\prime} 37^{\prime \prime}$, long $83^{\circ} 50^{\prime} 42^{\prime \prime}$, in $\mathrm{SE}^{1 / 4}$ sec. 29, T. 2 N., R. 5 E., Jefferson County, HydroIogic Unit 03110103, on right bank 10 ft upstream from culvert on U.S. Highway $90,1.5 \mathrm{mi}$ above mouth, and 1.5 mi east of Jefferson County Courthouse in Monticello.	0.48	$\begin{aligned} & 1983-87 \\ & 1996-00 \end{aligned}$	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 6.66 \\ & 6.39 \\ & 6.98 \\ & 5.51 \\ & 7.17 \end{aligned}$	$\begin{gathered} 147 \\ 130 \\ 169 \\ 79 \\ 184 \end{gathered}$
ST. MARKS AND WAKULLA RIVERS AND COASTAL AREA							
02326574	Ward Creek Tributary near Monticello, Fla.	Lat $30^{\circ} 38^{\prime} 21^{\prime \prime}$, long $83^{\circ} 50^{\prime} 37^{\prime \prime}$, in $\mathrm{SE}^{1 / 4}$ sec. 20, T. 3 N., R. 5 E., Jefferson County, Hydrologic Unit 03120001, at upstream side of culvert on County Road 58, 1.8 mi east of U.S. Highway 19, and 6.2 mi north of Monticello.	0.08	1996-00	1996 1997 1998 1999 2000	$\begin{aligned} & 0.75 \\ & 0.56 \\ & 1.05 \\ & 0.35 \\ & 0.41 \end{aligned}$	$\begin{gathered} 4.4 \\ 2.2 \\ 9.4 \\ <0.8 \\ 1.0 \end{gathered}$
02326595	Halls Run near Miccosukee, Fla.	Lat $30^{\circ} 37^{\prime} 01^{\prime \prime}$, long $84^{\circ} 02^{\prime} 28^{\prime \prime}$, in NW $1 / 4$ sec. 33, T. 3 N., R. 3 E., Leon County, Hydrologic Unit 03120001, at upstream side of culvert on State Road 59, and 1.5 mi north of Miccosukee.	0.11	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.68 \\ & 2.89 \\ & 1.15 \\ & 1.55 \end{aligned}$	$\begin{gathered} 6.4 \\ 13 \\ 33 \\ 6.3 \\ 16 \end{gathered}$
OCHLOCKONEE RIVER BASIN							
02329354	Attapulgus Creek Tributary near Jamieson, Fla.	Lat $30^{\circ} 39^{\prime} 42^{\prime \prime}$, long $84^{\circ} 28^{\prime} 39^{\prime \prime}$, in NW1/4 sec. 18, T. 3 N., R. 2 W., Gadsden County, Hydrologic Unit 03120003, at upstream side of culvert on State Road $161,0.3 \mathrm{mi}$ south of State Road 159 , 1.6 mi west of Jamieson, and 4.5 mi north of Havana.	1.03	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{array}{r} 3.22 \\ 1.77 \\ 4.83 \\ <1.32 \\ 2.65 \end{array}$	$\begin{gathered} 182 \\ 75 \\ 326 \\ <47 \\ 137 \end{gathered}$

Station No.	Station Name	Location	$\begin{gathered} \text { Drainage } \\ \text { area } \\ \left(\mathrm{mi}^{2}\right) \end{gathered}$	Period of Record	Annual Maximum		
					Water year	Gage height (feet)	Discharge (ft ${ }^{3} / \mathrm{s}$)
OCHLOCKONEE RIVER BASIN--continued							
02329558	Church Branch near Quincy, Fla.	Lat $30^{\circ} 35^{\prime} 34^{\prime \prime}$, long $84^{\circ} 31^{\prime} 18^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 10, T. 2 N., R. 3 W., Gadsden County, Hydrologic Unit 03120003, at upstream side of culvert on State Road 12 , and 3.6 mi east of the city hall in Quincy.	0.49	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 3.51 \\ & 4.31 \\ & 2.91 \\ & 2.31 \end{aligned}$	$\begin{gathered} 52 \\ 111 \\ 163 \\ 76 \\ 45 \end{gathered}$
02329559	Littman Branch near Quincy, Fl	Lat $30^{\circ} 35^{\prime} 32^{\prime \prime}$, long $84^{\circ} 31^{\prime} 08^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 10, T. 2 N., R. 3 W., Gadsden County, Hydrologic Unit 03120003, at upstream side of culvert on State Road 12 , and 3.8 mi east of the city hall in Quincy.	0.20	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.82 \\ & 2.27 \\ & 1.57 \\ & 1.62 \end{aligned}$	$\begin{aligned} & 16 \\ & 30 \\ & 45 \\ & 23 \\ & 25 \end{aligned}$
APALACHICOLA RIVER BASIN							
02356510	South Mosquito Creek Tributary near Hardaway, Fla.	Lat $30^{\circ} 39^{\prime} 11^{\prime \prime}$, long $84^{\circ} 43^{\prime} 58^{\prime \prime}$, in SW $1 / 4$ sec. 15, T. 3 N., R. 5 W., Gadsden County, Hydrologic Unit 03130011, at upstream side of culvert on County Road 379B, 0.9 mi south of railroad crossing at County Road 379B, and 1.4 mi north of Hardaway.	0.20	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 5.12 \\ & 5.94 \\ & 6.02 \\ & 4.45 \\ & 4.87 \end{aligned}$	$\begin{aligned} & 36 \\ & 54 \\ & 56 \\ & 19 \\ & 27 \end{aligned}$
CHIPOLA RIVER BASIN							
02358946	Mockingbird Run near Cypress, Fla.	Lat $30^{\circ} 39^{\prime} 41^{\prime \prime}$, long $85^{\circ} 06^{\prime} 48^{\prime \prime}$, in NW $1 / 4$ sec. 14, T. 3 N., R. 9 W., Jackson County, Hydrologic Unit 03130012, at upstream side of culvert on County Road 264A, 4.3 mi south of Cypress, and 5.5 mi southeast of Oakdale.	0.58	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 1.43 \\ & 4.60 \\ & 0.76 \\ & 0.32 \end{aligned}$	$\begin{gathered} 2.4 \\ 32 \\ 200 \\ 11 \\ 2.4 \end{gathered}$
PEA RIVER BASIN							
02364806	Poplar Branch near Leonia, Fla.	Lat $30^{\circ} 57^{\prime} 07^{\prime \prime}$, long $85^{\circ} 58^{\prime} 15^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 7, T. 6 N., R. 17 W., Holmes County, Hydrologic Unit 03140202, at upstream side of culvert on County Road 185, 2.3 mi southeast of Royals Crossroads, and 4.0 mi northwest of Leonia.	0.54	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 3.36 \\ & 6.44 \\ & 2.22 \\ & 0.99 \end{aligned}$	$\begin{gathered} 70 \\ 196 \\ 482 \\ 95 \\ 5.5 \end{gathered}$
CHOCTAWHATCHEE RIVER BELOW PEA RIVER							
02365408	Poplar Springs Branch near Noma, Fla.	Lat $30^{\circ} 57^{\prime} 52^{\prime \prime}$, long $85^{\circ} 34^{\prime} 16^{\prime \prime}$, in $\mathrm{SE}^{1 / 4}$ sec. 31, T. 7 N., R. 13 W., Holmes County, Hydrologic Unit 03140203, at upstream side of culvert on State Road 2, 3.0 mi east of Noma, and 3.2 mi west of Graceville.	0.08	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1.91 \\ & 1.62 \\ & 2.39 \\ & 1.57 \\ & 1.52 \end{aligned}$	$\begin{gathered} 12 \\ 6 \\ 22 \\ 5 \\ 4 \end{gathered}$

Station No.	Station Name	Location	Drainage area $\left(\mathrm{mi}^{2}\right)$	$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { Record } \end{aligned}$	Annual Maximum		
					Water year	Gage height (feet)	Discharge (ft ${ }^{3} / s$)
CHOCTAWHATCHEE RIVER BASIN							
02365715	Camp Branch Tributary near Redbay, Fla.	Lat $30^{\circ} 38^{\prime} 45^{\prime \prime}$, long $85^{\circ} 56^{\prime} 13^{\prime \prime}$, in $\mathrm{SE}^{1 / 4}$ sec. 21, T. 3 N., R. 17 W., Walton County, Hydrologic Unit 03140203, at upstream side of culvert on State Road 81, 3.8 mi north of Redbay, and 4.6 mi south of U.S. Highway I-10 interchange at State Road 81.	0.90	1995-00	$\begin{aligned} & 1995 \\ & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 5.68 \\ & 5.86 \\ & 2.68 \\ & 7.31 \\ & 3.72 \\ & 1.08 \end{aligned}$	$\begin{gathered} 368 \\ 385 \\ 113 \\ 540 \\ 189 \\ 18 \end{gathered}$
SHOAL RIVER BASIN							
02368326	Caney Creek Tributary No. 2 near Paxton, Fla.	Lat $30^{\circ} 56^{\prime} 02^{\prime \prime}$, long $86^{\circ} 13^{\prime} 32^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 15, T. 5 N., R. 20 W., Walton County, Hydrologic Unit 03140103, on upstream side of culvert on County Road 0605, 2.6 mi north of the community of Caney Creek, and 5.2 mi southeast of Paxton.	0.19	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 4.15 \\ & 6.35 \\ & 9.94 \\ & 4.63 \\ & 4.02 \end{aligned}$	$\begin{gathered} 20 \\ 76 \\ 243 \\ 31 \\ 17 \end{gathered}$
02368329	Caney Creek Tributary No. 1 near Paxton, Fla.	Lat $30^{\circ} 55^{\prime} 39^{\prime \prime}$, long $86^{\circ} 13^{\prime} 17^{\prime \prime}$, in $\mathrm{SW}^{1 / 4}$ sec. 14, T. 5 N., R. 20 W., Walton County, Hydrologic Unit 03140103, on upstream side of culvert on County Road 0605, 2.1 mi north of the community of Caney Creek, and 5.7 mi southeast of Paxton.	0.11	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 3.32 \\ & 4.94 \\ & 5.70 \\ & 5.29 \\ & 3.84 \end{aligned}$	$\begin{gathered} 54 \\ 105 \\ 384 \\ 167 \\ 71 \end{gathered}$
BLACKWATER RIVER BASIN							
02370018	Long Branch near Beaver Creek, Fla.	Lat $30^{\circ} 51^{\prime} 00^{\prime \prime}$, long $86^{\circ} 46^{\prime} 14^{\prime \prime}$, in NW $1 / 4$ sec. 17, T. 4 N., R. 25 W., Okaloosa County, Hydrologic Unit 03140104, at upstream side of culvert on State Road 4, 1.1 mi east of county line, 2.1 mi south of Beaver Creek, and 6.1 mi east of Munson.	0.55	1996-98	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \end{aligned}$	$\begin{array}{r} 5.09 \\ 2.37 \\ 10.06 \end{array}$	$\begin{gathered} 223 \\ 66 \\ 643 \end{gathered}$
02370370	Manning Creek Tributary at Berrydale, Fla.	Lat $30^{\circ} 53^{\prime} 58^{\prime \prime}$, long $87^{\circ} 01^{\prime} 20^{\prime \prime}$, in NW ${ }^{1 / 4}$ sec. 35, T. 5 N., R. 28 W., Santa Rosa County, Hydrologic Unit 03140104, at upstream side of culvert on State Road 4, 0.5 mi west of Berrydale, and 0.9 mi southeast of State Road 87.	1.24	1996-00	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 5.29 \\ & 2.35 \\ & 5.88 \\ & 1.52 \\ & 1.33 \end{aligned}$	$\begin{gathered} 634 \\ 174 \\ 701 \\ 82 \\ 65 \end{gathered}$
PERDIDO RIVER BASIN							
02376315	Buckeye Branch Tributary near Walnut Hill, Fla.	Lat $30^{\circ} 51^{\prime} 15^{\prime \prime}$, long $87^{\circ} 30^{\prime} 54^{\prime \prime}$, in NW ${ }^{1 / 4}$ sec. 23, T. 4 N., R. 33 W., Escambia County, Hydrologic Unit 03140106, at upstream side of culvert on County Road 97A, and 2.1 mi south of Walnut Hill.	0.34	1995-00	$\begin{aligned} & 1995 \\ & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	$\begin{aligned} & 4.48 \\ & 4.18 \\ & 3.49 \\ & 5.52 \\ & 2.71 \\ & 1.88 \end{aligned}$	$\begin{gathered} 123 \\ 110 \\ 82 \\ 178 \\ 54 \\ 29 \end{gathered}$

ELEVATION OF LAKES

304356082321700 JONES CREEK POND NEAR FARGO, GA

LOCATION.--Lat $30^{\circ} 43^{\prime} 56^{\prime \prime}$, long $82^{\circ} 32^{\prime} 17^{\prime \prime}$, Clinch County, Hydrologic Unit 03110201 , attached to wooden post of walkway on upstream side of dam on Williamsburg Road in Superior Forest (private property), and 3.5 mi northeast of Fargo.

DRAINAGE AREA.--Not determined.

PERIOD OF RECORD.--February 1999 to current year.

GAGE.--Nonrecording gage.

REMARKS.--Records good. Weekly staff gage readings furnished by Suwannee Forest employees.

EXTREMES FOR PERIOD OF RECORD.--Maximum observed gage height, 5.22 ft , Feb. 16, 1999, Sept. 25, 2000; minimum observed gage height, 3.06 ft , July 10, 2000.

EXTREMES FOR CURRENT YEAR.--Maximum observed gage height, 5.22 ft , Sept. 25; minimum observed gage height, 3.06 ft , July 10 .
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	4.34	---	---	---	---	---	4.74	--	--	---	---
2	-	---	---	---	---	--	---	---	---	---	---	---
3	---	-	-	---	---	---	4.22	---	---	---	---	---
4	4.68	-	-	4.10	---	---	---	---	-	---	---	---
5	---	---	---	---	--	--	---	---	3.68	--	-	5.00
6	---	---	4.20	---	---	---	---	---	-	-	---	---
7	---	---	---	---	4.32	4.28	---	---	--	--	3.68	---
8	-	4.36	-	---	---		---	4.58	---	---	,	---
9	-	---	--	---	---	4.22	---	---	--	---	--	---
10	---	---	---	4.18	---	---	4.10	---	---	3.06	---	---
11	4.62	--	---	---	---	--	---	---	--	--	---	5.12
12	---	-	---	---	-	---	---	---	--	--	--	--
13	--	--	4.20	4.16	---	4.22	---	---	3.56	---	---	---
14	---	---	---	---	4.36	---	---	---	3.55	---	3.46	--
15	---	4.28	---	---	---	---	---	---	---	--	---	---
16	---	-	---	---	---	---	---	4.34	--	---	-	-
17	---	-	---	--	4.38	---	4.06	---	---	3.26	---	---
18	4.52	--	--	4.12	---	--	---	-	---	--	---	5.18
19	---	--	---	---	---	--	--	---	3.48	---	---	---
20	---	---	4.20	---	-	4.18	-	---	.	---	---	--
21	-	---	---	---	---	---	---	---	---	---	3.28	---
22	-	4.22	--	---	4.36	--	---	4.16	---	---	---	---
23	---	---	---	---	---	---	---	---	--	---	--	---
24	---	--	--	4.28	---	---	3.90	4.08	---	---	-	-
25	4.44	---	--	---	--	---	---	---	---	3.10	-	5.22
26	---	-	---	-	-	---	---	---	3.50	3.50	-	---
27	-	---	4.18	---	---	4.14	---	---	---	---	---	---
28	---	4.24	---	---	4.36	---	---	---	---	---	4.66	--
29	---	,	---	---	,	--	-	---	---	-	4.72	---
30	-	---	-	---	---	--	--	3.90	---	---	---	---
31	---	---	---	4.34	---	---	---	---	---	3.60	---	---

304553082295000 GATOR CREEK DAM NEAR FARGO, GA

LOCATION.--Lat $30^{\circ} 45^{\prime} 53^{\prime \prime}$, long $82^{\circ} 29^{\prime} 50^{\prime \prime}$, Clinch County, Hydrologic Unit 03110201, attached to metal post on upstream side of concrete dam abutment on River Road in Superior Forest (private property), and 6.5 mi northeast of Fargo.

DRAINAGE AREA.--Not determined.

PERIOD OF RECORD.--February 1999 to current year.

GAGE.--Nonrecording gage.
REMARKS.--Records good. Weekly staff gage readings furnished by Suwannee Forest employees.

EXTREMES FOR PERIOD OF RECORD.--Maximum observed gage height, 5.79 ft , Feb. 16, 1999; minimum observed gage height, 3.84 ft , July 10, 2000.

EXTREMES FOR CURRENT YEAR.--Maximum observed gage height, 5.40 ft , May 1 ; minimum observed gage height, 3.84 ft , July 10 .

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	4.88	---	---	---	---	---	5.40	---	---	---	---
2	---	---	---	---	---	---	---	---	---	---	---	---
3	---	---	---	---	---	---	4.80	---	---	---	---	---
4	5.00	---	---	4.66	---	--	--	--	---	---	---	--
5	---	-	---	---	---	--	---	--	4.44	--	--	4.32
6	---	---	4.74	---	---	---	---	---	---	---	---	---
7	---	---	---	-	4.80	4.80	---	---	---	-	4.62	--
8	---	4.92	---	--	---	---	---	5.26	---	-	---	---
9	-	---	---	---	---	4.76	--	---	---	---	---	---
10	---	---	---	4.66	---	---	4.70	---	---	3.84	---	---
11	5.14	---	---	---	---	---	---	---	---	---	---	4.56
12	---	---					---	---	---	---	---	
13	---	---	4.72	4.66	---	4.74	---	--	4.32	---	---	---
14	-	---	---	---	4.82	---	--	---	4.30	-	4.42	---
15	---	4.88	---	---	---	---	---	---	---	---	---	---
16	---	---	---	---	---	---	---	5.04	---	---	---	--
17	---	-	--	---	4.84	-	4.66	---	---	4.02	---	--
18	5.06	-	---	4.62	-	---	--	---	---	---	--	4.60
19	---	-	---	---	---	---	---	---	4.30	-	--	---
20	---	---	4.74	---	---	4.72	---	---	---	---	---	---
21	-	---	---	---	---	---	---	---	---	---	4.24	---
22	---	4.78	---	---	4.84	--	---	4.86	---	---	---	--
23	---	---	---	---	---	---	---	---	---	---	-	--
24	---	----	----	4.76	----	----	4.50	4.80	--	3.86	---	---
25	4.98	---	---	---	---	---	--	--	---	3.86	---	4.90
26	-	---	---	---	---	---	---	---	4.28	4.06	---	---
27	---	---	4.72	---	---	4.64	---	---	---	---	---	---
28	---	4.78	---	---	4.84	---	---	--	---	--	4.28	--
29	---	---	---	---	---	-	---	---	---	---	4.25	---
30 31	----	----	----	4.84	----	----	----	4.62	----	4.52	----	--

LOCATION.--Lat $30^{\circ} 31^{\prime} 43^{\prime \prime}$, long $84^{\circ} 21^{\prime} 30^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{sec}$. 32 , T. 2 N., R. 1 W., Leon County, Hydrologic Unit 03120003, on southwest side of lake, east of U.S. Highway 27, and 6.0 mi northwest of Tallahassee.

SURFACE AREA.--4,001 acres $\left(6.25 \mathrm{mi}^{2}\right)$, at elevation 87.00 ft National Geodetic Vertical Datum of 1929.

DRAINAGE AREA.--43.2 mi^{2}.

PERIOD OF RECORD.--March 1950 to January 1953, March 1954 to August 1956, September 1956 to August 1958 (fragmentary), September 1958 to May 1990. June 1990 to current year (fragmentary). Records of elevation prior to October 1960 are available in file of the Geological Survey.

GAGE.--Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.-Lake has no surface outlet. Some outflow from lake through sinkhole to ground water.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily elevation, 96.16 ft , June 18, 1966 (from recorded range in stage); minimum observed, 75.68 ft , Jan. 4 , 1957.

EXTREMES FOR CURRENT YEAR.--Maximum observed elevation, 78.38 ft , Nov. 19; minimum observed, below 76.20 ft , elevations unknown, many days from June to September.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DÁlLY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	78.00	-	-	---	--	--	--	--	-	-	---
2	---	---	---	---	---	---	---	-	-	---	<76.20	---
3	---	---	---	--	77.85	---	---	---	---	---	---	---
4	---	---	---	77.90	---	---	---	---	---	---	---	---
5	---	78.20	---	---	---	---	---	77.28	---	<76.20	---	---
6	---	-	-	-	---	77.69	77.68	---	76.50	---	--	< 76.20
7	78.28	---	---	-	---	---	---	--	76.47	--	--	--
8	---	---	---	---	---	---	---	---	---	---	-	---
9	---	-	---	-	---	---	---	---	-	---	<76.20	---
10	---	---	-	---	77.77	77.64	---	77.18	--	---	--	---
11	---	---	---	---	-	---	--	-	--	--	---	--
12	---	78.35	---	77.88	---	---	---	--	--	< 76.20	---	--
13	---	-	---	-	---	---	77.56	---	---	---	---	< 76.20
14	---	---	77.86	---	---	---	---	---	<76.20	--	--	---
15	---	-	.	---	---	---	--	---		---	--	--
16	--	78.06	---	-	-	77.58	---	---	-	---	< 76.20	---
17	---	---	---	-	77.84	---	---	76.98	-	---	---	---
18	---	---	---	77.82	--	---	---	-	---	---	---	---
19	---	78.38	---	---	---	---	--	---	76.30	< 76.20	---	--
20	78.16	---	---	---	-	---	77.44	---	---	-	---	<76.20
21	---	---	77.95	---	---	---	---	---	---	---	-	---
22	--	---	--	---	---	---	---	---	---	---	--	---
23	---	---	---	---	---	77.78	--	--	76.28	---	< 76.20	---
24	--	---	---	---	77.74	---	---	---	,	---	--	---
25	--	---	---	-	---	---	---	---	---	---	---	---
26	---	77.90	---	---	---	---	---	---	---	< 76.20	---	---
27	---	---	77.97	77.82	---	---	---	---	---	---	---	---
28	---	---	---	---	---	---	--	---	---	--	--	76.72
29	--	-	---	---	---	---	---	---	<76.20	---	--	-
30	---	---	---	-	-	77.74	---	76.65	---	-	< 76.20	---
31	---	---	---	---	---	---	---	---	---	---	---	---

LOCATION.--Lat $30^{\circ} 23^{\prime} 15^{\prime \prime}$, long $84^{\circ} 38^{\prime} 45^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{sec}$. 16, T. 1 S., R. 4 W., Leon County, Hydrologic Unit 03120003 , at left upstream end of C.H. Corn Hydroelectric Dam on Ochlockonee River, 1.0 mi northwest of Bloxham, and 3.5 mi downstream from Oklawaha Creek.
SURFACE AREA.--6,850 acres ($10.7 \mathrm{mi}^{2}$), at elevation 60.0 ft National Geodetic Vertical Datum, from data provided by Florida Power Corporation.
DRAINAGE AREA.--1,700 mi ${ }^{2}$.
PERIOD OF RECORD.--January 1930 to September 1950 (month-end contents only, published only in WSP 1304); October 1951 to September 1960 (month-end elevations and contents); October 1960 to September 1982, March 1985 to September 301992 (month-end elevations, contents and daily elevations); October 1,1992 to current year, daily elevations.
REVISED RECORDS.--WSP 1905, WRD FL-76-4: Drainage area.
GAGE.--Nonrecording gage and water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.
REMARKS.--Reservoir is formed by concrete dam with riprapped earth embankments. Spillway is equipped with seven taintor gates, each 16 ft high by 25 ft wide. Storage began in June 1929; water in lake first reached minimum operating level January 1930. Usable capacity, 69,800 acre-ft between elevations, 60.0 ft , minimum operating level, and 68.5 ft , top of closed taintor gates. Dead storage is unknown. Contents are available by request.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 99,400 acre-ft, Sept. 22, 1969, elevation, 71.16 ft ; maximum instantaneous elevation, 71.60 ft, Sept. 22, 1969; minimum daily elevation after January 1930, 48.70 ft , Oct. 22,23, 1957 (earth embankment breached).
EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 73,500 acre-ft, Apr. 26, elevation, 68.87 ft ; minimum daily contents, 59,500 acre-ft, June 1516, elevation, 67.44 ft .

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	68.52	68.41	68.39	68.51	68.56	68.54	68.58	68.49	67.75	67.88	68.05	68.49
2	68.50	68.67	68.37	68.54	68.53	68.53	68.53	68.46	67.71	67.89	68.09	68.51
3	68.49	68.71	68.37	68.55	68.50	68.53	68.47	68.44	67.68	67.90	68.16	68.54
4	68.48	68.62	68.36	68.55	68.48	68.52	68.44	68.44	67.64	67.89	68.22	68.64
5	68.49	68.51	68.35	68.56	68.47	68.54	68.45	68.47	67.61	67.85	68.32	68.68
6	68.49	68.47	68.35	68.48	68.45	68.53	68.43	68.48	67.60	67.83	68.40	68.85
7	68.49	68.43	68.36	68.42	68.43	68.52	68.42	68.48	67.60	67.81	68.45	68.76
8	68.47	68.43	68.37	68.42	68.42	68.49	68.44	68.48	67.58	67.82	68.47	68.60
9	68.47	68.45	68.36	68.43	68.43	68.48	68.51	68.44	67.56	67.79	68.49	68.50
10	68.48	68.46	68.35	68.48	68.46	68.48	68.52	68.42	67.53	67.76	68.61	68.47
11	68.53	68.46	68.36	68.55	68.49	68.47	68.53	68.41	67.50	67.74	68.60	68.47
12	68.61	68.49	68.36	68.59	68.53	68.48	68.53	68.39	67.48	67.73	68.59	68.48
13	68.63	68.48	68.36	68.63	68.57	68.46	68.52	68.37	67.46	67.72	68.58	68.49
14	68.61	68.46	68.38	68.65	68.68	68.46	68.52	68.36	67.46	67.73	68.55	68.51
15	68.51	68.45	68.41	68.51	68.72	68.47	68.46	68.34	67.44	67.74	68.53	68.51
16	68.45	68.45	68.43	68.45	68.61	68.52	68.42	68.32	67.44	67.73	68.52	68.47
17	68.41	68.44	68.43	68.42	68.56	68.57	68.40	68.28	67.46	67.75	68.50	68.24
18	68.43	68.43	68.44	68.43	68.52	68.57	68.44	68.24	67.52	67.76	68.47	68.13
19	68.44	68.42	68.49	68.49	68.48	68.50	68.46	68.20	67.59	67.75	68.45	68.18
20	68.44	68.41	68.51	68.49	68.52	68.51	68.46	68.17	67.59	67.74	68.45	68.22
21	68.44	68.42	68.58	68.53	68.52	68.51	68.44	68.14	67.59	67.72	68.52	68.27
22	68.42	68.42	68.61	68.54	68.54	68.49	68.46	68.11	67.57	67.72	68.60	68.53
23	68.41	68.41	68.59	68.57	68.54	68.50	68.46	68.08	67.58	67.73	68.58	68.54
24	68.40	68.40	68.53	68.62	68.54	68.49	68.45	68.03	67.62	67.74	68.56	68.48
25	68.38	68.40	68.52	68.62	68.56	68.50	68.66	68.00	67.71	67.82	68.55	68.51
26	68.37	68.41	68.48	68.63	68.56	68.53	68.87	67.98	67.74	67.88	68.57	68.54
27	68.36	68.41	68.47	68.59	68.56	68.57	68.77	67.95	67.76	67.90	68.56	68.45
28	68.35	68.41	68.44	68.53	68.57	68.59	68.58	67.88	67.79	67.92	68.54	68.46
29	68.34	68.40	68.43	68.47	68.58	68.57	68.54	67.87	67.81	67.95	68.53	68.52
30	68.32	68.41	68.45	68.49	---	68.51	68.52	67.86	67.87	68.00	68.52	68.51
31	68.31	---	68.48	68.53	---	68.54	---	67.81	---	68.02	68.49	---
MEAN	68.45	68.46	68.43	68.52	68.53	68.52	68.51	68.24	67.61	67.81	68.47	68.49
MAX	68.63	68.71	68.61	68.65	68.72	68.59	68.87	68.49	67.87	68.02	68.61	68.85
MIN	68.31	68.40	68.35	68.42	68.42	68.46	68.40	67.81	67.44	67.72	68.05	68.13

[^6]
WELL DESCRIPTIONS AND GROUND-WATER DATA

Figure 14. Location of wells in Wakulla County.

WAKULLA COUNTY
WELL NUMBER.--300740084293001. USGS Observation Well near Crawfordville, FL.
LOCATION.--Lat $30^{\circ} 07^{\prime} 40^{\prime \prime}$, long $84^{\circ} 29^{\prime} 30^{\prime \prime}$, in NW $1 / 4 \mathrm{NE} 1 / 4 \mathrm{NW} \frac{1}{4} \sec .24$, T. 4 S., R. 3 W., Hydrologic Unit 03120003 , 400 ft east of Sopchoppy River, 6.6 mi southwest of intersection of Forest Road 365 and State Highway 368, and 7.8 mi west of Crawfordville.

AQUIFER.--Hawthorne Limestone aquifer of the Miocene System, Geologic Unit 122 HTRNN.
WELL CHARACTERISTICS.--Drilled, bench mark, artesian well, diameter 6 in ., depth 127 ft , cased to 121 ft .

INSTRUMENTATION.--Water-level recorder. Measuring point: Top of recorder shelf, 2.90 ft above land-surface datum.
DATUM.--Land-surface datum is 46.91 ft above National Geodetic Vertical Datum of 1929.

PERIOD OF RECORD.--January 1967 to September 1998, March to September 2000. Records of water levels prior to January 1974 are available in files of the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 36.91 ft NGVD, July 31, 1975; lowest, 24.42 ft NGVD, Sept. $14,1966$.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	--	--	---	---	---	31.37	32.11	30.80	29.46	28.83	31.64	31.05
2	--	-	---	---	--	31.37	32.11	30.78	29.42	28.80	31.70	31.02
3	--	-	---	---	--	31.37	32.11	30.74	29.39	28.75	31.86	31.04
4	-	-	---	-	--	31.37	32.10	30.71	29.37	28.72	32.06	31.05
5	---	---	---	---	---	31.27	32.01	30.66	29.33	28.70	32.17	31.26
6	--	--	---	---	--	31.21	31.98	30.63	29.29	28.68	32.19	32.20
7	---	---	---	---	---	31.15	31.95	30.59	29.21	28.63	32.18	33.17
8	--	-	--	-	---	31.13	31.91	30.56	29.17	28.58	32.14	33.47
9	--	-	--	-	---	31.12	31.82	30.54	29.14	28.49	32.09	33.48
10	---	---	-	---	---	31.10	31.77	30.49	29.08	28.47	32.10	33.41
11	--	-	---	---	-	31.14	31.72	30.42	29.05	28.45	32.10	33.23
12	---	-	-	---	---	31.14	31.65	30.36	29.00	28.43	32.18	33.06
13	-	-	---	---	---	31.15	31.61	30.32	28.98	28.45	32.17	32.89
14	---	---	-	---	---	31.18	31.56	30.25	28.94	28.47	32.12	32.75
15	--	-	---	---	---	31.18	31.53	30.19	28.89	28.47	32.03	32.60
16	---	---	---	---	---	31.27	31.46	30.14	28.89	28.45	31.97	32.47
17	-	---	---	---	---	31.33	31.42	30.11	28.84	28.41	31.91	32.31
18	---	---	---	---	---	31.36	31.39	30.06	28.84	28.37	31.83	32.27
19	---	---	---	---	---	31.50	31.32	30.00	28.84	28.36	31.74	32.27
20	-	-	---	---	---	31.56	31.23	29.98	28.81	28.38	31.69	32.26
21	---	---	---	---	---	31.58	31.19	29.97	28.80	28.47	31.67	---
22	-	---	---	---	---	31.60	31.17	29.93	28.79	29.03	31.61	35.53
23	---	---	---	---	---	31.60	31.12	29.91	28.78	29.71	31.56	35.92
24	---	---	---	---	---	31.59	31.10	29.86	28.78	30.30	31.52	35.90
25	---	---	---	---	---	31.58	31.10	29.81	28.78	30.83	31.47	35.75
26	---	---	---	---	---	31.73	31.01	29.75	28.78	31.18	31.44	35.47
27	---	---	---	---	---	31.85	30.97	29.70	28.78	31.39	31.36	35.06
28	---	---	-	---	---	31.88	30.98	29.66	28.82	31.51	31.29	34.68
29	--	-	--	-	---	31.93	30.92	29.64	28.84	31.55	31.25	34.35
30	-	-	-	-	---	32.06	30.85	29.58	28.84	31.57	31.18	34.08
31	---	---	---	---	---	32.09	---	29.50	---	31.57	31.12	---
MEAN	---	---	---	---	---	31.44	31.51	30.18	29.00	29.29	31.79	--
MAX	---	---	---	---	---	32.09	32.11	30.80	29.46	31.57	32.19	--
MIN	---	---	---	---	-	31.10	30.85	29.50	28.78	28.36	31.12	---

Figure 15. Location of wells in Washington County.

WELL NUMBER.--303025085350501. Local Number 422A. USGS Observation Well near Wausau, FI.
LOCATION.--Lat $30^{\circ} 30^{\prime} 25^{\prime \prime}$, long $85^{\circ} 35^{\prime} 05^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{NW}^{1} / 4 \mathrm{NW} / 1 / 4 \mathrm{sec}$. 7, T. 1 N., R. 13 W ., Hydrologic Unit $03140101,0.6 \mathrm{mi}$ east of road to Deadening Cemetery, 4.2 mi east of State Highway 77, and 8.6 mi south of Wausau.

AQUIFER.--Floridan aquifer of the Tertiary system;, Geologic Unit 120 FLRD.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, diameter 4 in ., depth 150 ft , cased to 110 ft .

INSTRUMENTATION.--Water-level recorder. Measuring point: Top of casing, 2.90 ft above land-surface datum.

DATUM.--Land-surface datum is 66.11 ft above National Geodetic Vertical Datum of 1929.

PERIOD OF RECORD.--October 1962 to September 1989. October 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 65.75 ft NGVD, Oct. 1,2, 1979; lowest, 48.19 ft NGVD, Feb. $13,14,1969$.
ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	58.41	58.25	57.52	57.32	57.00	57.07	56.63	56.60	54.49	53.60	52.66	52.03
2	58.33	58.29	57.49	57.29	56.96	57.06	56.61	56.56	54.45	53.57	52.67	52.02
3	58.32	58.34	57.47	57.27	56.93	57.00	56.57	56.49	54.40	53.53	52.67	51.98
4	58.29	58.34	57.42	57.24	56.90	56.99	56.50	56.41	54.36	53.50	52.67	51.94
5	58.29	58.31	57.38	57.18	56.82	56.91	56.35	56.31	54.32	53.46	52.69	51.90
6	58.27	58.30	57.38	57.18	56.77	56.89	56.14	56.04	54.31	53.43	52.69	51.89
7	58.22	58.28	57.36	57.15	56.65	56.84	56.02	55.86	54.25	53.38	52.68	51.90
8	58.20	58.24	57.30	57.15	56.47	56.81	55.95	55.74	54.22	53.34	52.67	51.90
9	58.17	58.18	57.28	57.06	56.42	56.76	55.79	55.65	54.18	53.27	52.65	51.90
10	58.29	58.16	57.26	57.10	56.42	56.68	55.78	55.54	54.13	53.24	52.63	51.88
11	58.31	58.11	57.23	57.10	56.42	56.51	55.73	55.47	54.09	53.22	52.61	51.86
12	58.31	58.08	57.23	57.10	56.42	56.48	55.69	55.42	54.04	53.20	52.58	51.83
13	58.38	58.03	57.31	57.09	56.88	56.46	55.65	55.38	54.02	53.18	52.53	51.78
14	58.42	58.02	57.30	57.07	57.18	56.34	55.61	55.32	53.97	53.17	52.47	51.77
15	58.42	58.00	57.27	57.05	57.30	56.25	55.58	55.24	53.92	53.16	52.42	51.74
16	58.42	57.96	57.23	57.05	57.37	56.21	55.52	55.21	53.90	53.10	52.39	51.70
17	58.40	57.92	57.23	57.02	57.38	56.21	55.50	55.16	53.85	53.04	52.36	51.65
18	58.33	57.88	57.28	56.97	57.38	56.21	55.47	55.11	53.82	53.01	52.31	51.63
19	58.27	57.86	57.29	56.89	57.36	56.21	55.41	55.07	53.77	52.99	52.29	51.60
20	58.23	57.85	57.27	56.82	57.31	56.21	55.37	55.03	53.74	52.94	52.25	51.58
21	58.20	57.83	57.45	56.63	57.27	56.94	55.35	54.99	53.69	52.90	52.24	51.58
22	58.17	57.80	57.50	56.59	57.24	56.91	55.30	54.96	53.66	52.88	52.24	51.70
23	58.14	57.77	57.53	56.72	57.21	56.89	55.27	54.92	53.61	52.81	52.22	51.82
24	58.08	57.74	57.54	56.92	57.18	56.85	56.36	54.88	53.58	52.80	52.20	51.91
25	58.05	57.73	57.50	56.98	57.14	56.81	56.47	54.84	53.56	52.78	52.19	51.96
26	58.03	57.73	57.53	56.97	57.10	56.79	56.60	54.80	53.56	52.75	52.19	51.95
27	57.98	57.70	57.52	57.01	57.13	56.79	56.64	54.72	53.59	52.75	52.17	51.98
28	57.96	57.66	57.49	57.04	57.12	56.76	56.71	54.69	53.60	52.71	52.15	51.97
29	57.94	57.61	57.43	57.04	57.10	56.71	56.69	54.65	53.62	52.69	52.14	51.95
30	57.90	57.55	57.41	57.04	---	56.71	56.64	54.59	53.61	52.66	52.11	51.94
31	57.88	---	57.36	57.02	---	56.68	---	54.53	---	52.65	52.07	---
TOTAL	1804.61	1739.52	1778.76	1768.06	1652.83	1756.94	1679.90	1716.18	1618.31	1645.71	1624.81	1555.24
MEAN	58.21	57.98	57.38	57.03	56.99	56.68	56.00	55.36	53.94	53.09	52.41	51.84
MAX	58.42	58.34	57.54	57.32	57.38	57.07	56.71	56.60	54.49	53.60	52.69	52.03
MIN	57.88	57.55	57.23	56.59	56.42	56.21	55.27	54.53	53.56	52.65	52.07	51.58
CAL YR	1999	TOTAL 197	92.29 M	AN 58.91	MAX 60.06	6 MIN 57	23					
WTR YR	2000	TOTAL 203	40.87 M	AN 55.58	MAX 58.42	MIN 51	58					

MISCELLANEOUS WATER LEVEL MEASUREMENTS

STATION NUMBER	STATION NAME	DATE OF SAMPLE	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)
CLINCH, GA			
304738082265001	Perimeter Road Well near Fargo	11-01-99	7.95
		01-13-00	9.78
		02-17-00	8.86
		03-09-00	8.90
		05-24-00	9.18
		06-14-00	9.92
		07-26-00	9.60
		08-29-00	8.12
304741082263101	Bay Creek Well near Fargo	11-01-99	3.67
		01-13-00	4.43
		02-17-00	3.50
		03-09-00	3.72
		05-24-00	4.77
		06-14-00	5.97
		07-26-00	4.61
		08-29-00	4.01
304825082290401	Steedley Field Well near Fargo	11-01-99	4.01
		01-13-00	4.36
		02-17-00	2.50
		03-09-00	3.54
		05-24-00	4.82
		06-14-00	7.29
		07-26-00	2.92
		08-29-00	4.15

PROJECT DATA

Several projects conducted in the Lower Suwannee River were run consecutively from June 1995 to October 2000. This section documents the data collected for the surface-water projects in the program (table 1). In 1995, four continuous-recording gages were installed in the lower river, two in West Pass (West Pass Suwannee River at Suwannee, Fla. and West Pass Suwannee River near mouth near Suwannee, Fla.) and two in East Pass (East Pass Suwannee River near Suwannee, Fla. and East Pass Suwannee River at mouth near Suwannee, Fla.). Data collected at these sites included water level, water temperature, and salinity. Discharge was computed at two sites, one in each pass, using index-velocity methods. In 1999, these four gages were moved to concrete pilings about 20-30 ft . from where the old gages were located. Additionally, two more sites were added to the network, one at a location on the main stem of the Suwannee River above the WestEast Pass split (Suwannee River above Gopher River near Suwannee, Fla.), and another in the Gulf of Mexico about 5.5 miles west of Wadley Pass (Gulf of Mexico at Red Bank Reef, near Suwannee, Fla.).

Data collected for the project also included synoptic water-quality and discharge measurements. Water temperature and salinity were collected in a series of 52 synoptic measurements at 16 different sites (table 1) from 1998 to 2000. At each location, data were collected at approximately $2-\mathrm{ft}$. intervals from the water surface to the channel bottom. During December 14-16, 1999 and May 30-June 2, 2000, 859 discharge measurements were made in two synoptic data-collection efforts. The water quality and discharge synoptic measurement data are included in the USGS NWIS database.

Table 1. Data collected at U.S. Geological Survey sites for Suwannee Estuary Project

| Continuous-recording gages | Site
 name
 abbrevi-
 ation | Station number | Latitude |
| :--- | :--- | :--- | :--- | Longitude | River |
| :--- |
| mile |

$$
\left.\begin{array}{ll}
& \text { EXPLANATION } \\
\text { W2 } \bullet & \text { SALINITY MEASUREMENT SITE AND NUMBER } \\
& \text { FOR FLORIDA GAME AND FRESH WATER FISH } \\
& \text { COMMISSION LONGITUDINAL TRANSECTS }
\end{array}\right\}
$$

A wide variety of hydrologic conditions occurred during 1995 to 2000. Water temperature varied due to season and water source (Gulf of Mexico or mainstem Suwannee River).Water levels and salinity varied due to river flow and tidal action. In addition to tidal cycles, tropical storms contributed strongly to the observed extremes in stage and salinity in the Lower Suwannee River.

In the lower Suwannee River during water year 1995, rainfall and streamflows were near normal; in water year 1996, rainfall and streamflow were near normal to below normal. Several tropical storms impacted the area. Tropical Storm Jerry passed through the area August 25-26, 1995 and helped increase mean daily salinities at WM and EM to approximately 10 parts per thousand (ppt). Hurricane Opal came ashore in the western Florida panhandle on October 4-5, 1995, and the associated storm surge raised water levels and increased salinities in the Lower Suwannee River and in the Gulf of Mexico adjacent to the river. Mean daily salinities at WM and EM peaked greater than 20 ppt , while instantaneous values reached 30 ppt .

Precipitation and streamflow were near normal throughout water year 1997. The eye of Hurricane Josephine passed just to the west of the mouth of the Suwannee River on October 7-8, 1996 and raised water levels and increased salinities in the estuary. Because of the hurricane, maximum instantaneous gage heights at the lower river sites rose to their highest levels for the entire data collection period of the project. Mean daily salinities at WM increased to greater than 12 ppt. Hurricane Josephine came early in the water year, and the following summer's hurricane season was fairly quiet.

Rainfall and streamflow were above-normal during the first half of water year 1998, then average to below-normal during the last half. Hurricane Earl made landfall in the central panhandle of Florida in early September 1998 and raised water levels and increased salinity in the Lower Suwannee River. Mean daily salinities at WM and EM increased to greater than 15 ppt on Sept. 3. In late September 1998, another storm, Hurricane Georges, passed south over the Florida Keys and made landfall in the panhandle. Mean daily salinity levels increased at WM and EM to more than 10 ppt on September 30.

Precipitation and streamflow averaged below normal in water year 1999. Tropical Storm Harvey passed through the Gulf of Mexico in September 1999 and, in combination with a high tide, increased mean daily salinities to 12 ppt at WM and to 16 ppt at EM on September 19. On this same date, maximum instantaneous salinities increased to greater than 20 ppt at WM and EM , and to greater than 3 ppt at AGR. This was the first water year that the AGR gage was in operation.

Rainfall and streamflows continued to be below normal during water year 2000. Flows at many long-term gaging stations in the Suwannee River basin reached their lowest levels since the drought of 1954-56. During droughts, the primary source of freshwater flow (salinity less than 0.5 ppt) into the lower Suwannee River comes from a series of springs discharging from the Upper Floridan aquifer. Salinity of the water, as measured at AGR, averaged about 0.16 ppt in 2000. Data from RB on June 5-6, 2000 show salinities approaching 37 ppt in the Gulf of Mexico, greater than the 35 ppt typical for seawater, suggesting longer-term effects of the regional drought which extended as far west as Texas. Because of the low flows in the Suwannee River, high tides pushed saline water up the river as far as the AGR gage on several occasions in 2000. Hurricane Gordon was the only tropical storm to significantly affect the mouth of the Suwannee River during water year 2000. This storm came ashore just southeast of the mouth of the river on September 17. Because the eye was southeast of the river mouth, winds from the storm blew downstream and reduced tidal fluctuations and salinity levels in the estuary.

Data collection at the gages discussed here was discontinued in September 2000, with the exception of data collection at AGR, which was continued as part of the USGS long-term gaging program.

LOCATION.-- Lat. $29^{\circ} 20^{\prime} 19^{\prime \prime}$, long. $83^{\circ} 05^{\prime} 133^{\prime \prime}$, in $\mathrm{NE}^{1} / 4 \mathrm{sec} .22$, T. 13S., R. 12E., Dixie County, hydrologic unit 03110205 , on right bank, 0.6 mi. downstream of Flag Creek, 1.9 mi. upstream of Gopher River, 4.8 mi . upstream of the town of Suwannee, and 7.6 mi. above the mouth.
DRAINAGE AREA.--9,912 mi^{2}.
PERIOD OF RECORD.-- June 1999 to current year.
GAGE.--Water-stage recorder; datum of gage is 2.10 ft . below National Geodetic Vertical Datum (NGVD) of 1929; water-quality measured at two elevations, 1.95 ft . (top) and 10.02 ft . (bottom) below NGVD 1929.

REMARKS.-- Tidally-influenced site--discharge computed using index velocity. Record is rated as follows:
FY 1999 (June 23 to Sept. 30): discharge, elevation, water temperature--fair; salinity--fair, except July 16-Aug. 31, which is poor. FY 2000: discharge and elevation--fair, except for estimated days which are poor; water temperature and salinity--good.
EXTREMES.-- Tidally influenced site. WY 1999 (June 23-Sept. 30): discharge, max. $17,800 \mathrm{ft}^{3} / \mathrm{s}$ on Aug. 7, min. $-10,400 \mathrm{ft}^{3} / \mathrm{s}$ on Sept. 25; elevation, max. 3.11 ft . on Sept. 20, min. - 0.96 ft . on Sept. 14; water temperature, top sensor, max. $30.9^{\circ} \mathrm{C}$ on July 27, min. $24.3^{\circ} \mathrm{C}$ on Sept. 23 , bottom sensor, max. 30.6 ${ }^{\circ} \mathrm{C}$ on July 27, min. $24.2{ }^{\circ} \mathrm{C}$ on Sept. 25; salinity, top sensor, max. 0.55 ppt on Sept. 19, min. 0.15 ppt. on Aug. 9. , bottom sensor, max. 3.3 ppt on Sept. 19 , min .0 .15 ppt . FY 2000: discharge, max. $19,700 \mathrm{ft}^{3} / \mathrm{s}$ on Sept. 16 , $\mathrm{min} .-13,000 \mathrm{ft}^{3} / \mathrm{s}$ on July 31 ; elevation, max. 3.22 ft . on Sept. 16, min. -1.94 ft . on Jan. 14 ; water temperature, top sensor, max. $31.2^{\circ} \mathrm{C}$ on July 10 , min. $13.6^{\circ} \mathrm{C}$ on Jan. 28 , bottom sensor, max. $30.8^{\circ} \mathrm{C}$ on July 11 and 12 , min. $13.5{ }^{\circ} \mathrm{C}$ on Jan. 28 ; salinity, top sensor, max. 0.35 ppt on July 31, min. 0.08 ppt. on Sept. 17-20, bottom sensor, max. 0.51 ppt on July 31, min. 0.08 ppt. on Sept. 17-18.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	4650	5010	4090
2	---	-	-	-	---	-	-	-	--	5050	5570	4540
3	-	---	-	-	-	---	---	---	---	4620	5330	3910
4	---	---	-	---	---	---	---	--	---	4490	4860	4260
5	---	---	--	--	---	--	--	--	--	4150	4320	4120
6	---	---	-	--	---	---	--	---	---	3530	4810	4580
7	---	---	---	---	---	---	--	--	---	4180	5990	5200
8	--	---	---	-	---	---	---	---	---	4500	5870	4250
9	---	---	---	--	---	---	--	--	--	5080	6030	4930
10	---	---	---	---	---	---	---	---	---	5090	5430	4500
11	---	---	---	---	---	---	---	---	---	4960	5500	4580
12	---	---	---	---	---	---	---	---	---	4930	5930	4630
13	--	---	---	---	---	---	---	---	---	4640	4960	4130
14	---	---	---	---	---	---	--	--	--	4860	4810	4760
15	---	---	---	---	---	---	---	---	---	4770	5430	3050
16	---	---	--	---	---	---	---	---	---	4890	5710	3780
17	---	---	---	---	---	--	---	--	--	5150	5070	3990
18	---		---	---	---	---	---	---	---	4770	4650	3420
19	---	-	-	--	---	---	---	---	---	5260	4780	3880
20	---	---	---	---	---	-	--	---	---	4850	5180	4780
21	---	---	---	-	---	---	-	---	---	4920	5030	6210
22	---	---	--	--	--	--	--	--	-	4790	5190	4660
23	---	---	---	---	---	--	--	--	---	4610	4860	4210
24	---	-	-	-	-	--	--	---	4550	4680	4640	3760
25	---	---	---	--	--	--	-	-	4670	5320	4970	4510
26	---	-	---	--	--	---	--	--	4570	5110	4720	4450
27	---	-	-	--	---	---	-	-	4400	4970	4670	5050
28	---	---	---	---	---	---	---	--	4590	4630	4380	4840
29	---	---	---	---	---	--	--	--	4600	4720	4360	4470
30	--	-	-	-	---	---	---	---	5000	5060	4590	5210
31	---	---	---	---	---	---	---	---	---	4700	4960	---
MEAN	---	---	---	---	---	---	---	---	---	4772	5084	4425
MAX	---	---	---	---	---	---	---	---	---	5320	6030	6210
MIN	---	---	---	---	---	---	---	---	---	3530	4320	3050

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	1.16	1.29	1.22
2	---	---	---	---	---	---	---	---	---	. 86	1.23	1.05
3	---	---	---	---	---	---	---	---	---	. 78	1.15	1.07
4	---	---	---	---	---	---	---	---	---	. 87	. 94	1.28
5	---	---	---	---	---	---	---	---	---	. 92	1.26	1.59
6	---	---	---	---	---	---	---	---	---	. 88	1.53	1.86
7	---	---	---	---	---	---	---	---	---	1.04	1.71	1.65
8	---	---	---	---	---	---	---	---	---	1.20	1.54	1.54
9	---	---	---	---	---	---	---	---	---	1.28	1.62	1.56
10	---	---	---	---	---	---	---	---	---	1.17	1.73	1.45
11	---	---	---	---	---	---	---	---	---	1.22	1.76	1.46
12	---	---	---	---	---	---	---	---	---	1.32	1.27	1.17
13	---	---		---	---	---	---	---	---	1.42	1.13	. 89
14	---	---	---	---	---	---	---	---	---	1.29	1.41	. 26
15	---	---	---	---	---	---	---	---	---	1.26	1.50	. 29
16	---	---	---	---	---	---	---	---	---	1.19	1.37	1.19
17	---	---	---	---	---	---	---	---	---	1.09	. 96	1.04
18	---	---	---	---		---	---	---	---	1.12	1.19	1.40
19	---	---	---	---	---	---	---	---	---	. 94	1.25	2.20
20	---	---	---	---	---	---	---	---	---	. 79	1.37	2.42
21	---	---	---	---	---	---	---	---	---	. 66	1.20	1.88
22	---	---	---	---	---	---	---	---	---	. 65	1.20	1.04
23	---	---	---	---	---	---	---	---	---	. 85	1.34	1.09
24	---	---	---	---	---	---	---	---	. 81	1.24	1.36	1.46
25	---	---	---	---	---	---	---	---	. 86	1.29	1.37	1.78
26	---	---	---	---	---	---	---	---	. 93	1.13	1.30	1.87
27	---	---	---	---	---	---	---	---	1.23	1.17	1.33	1.89
28	---	---	---	---	---	---	---	---	1.21	1.27	1.29	1.68
29	---	---	---	---	---	---	---	---	1.34	1.43	1.37	1.78
30	---	---	---	---	---	---	---	---	1.30	1.36	1.47	1.50
31	---	---	---	---	---	---	---	---	--	1.41	1.05	
MEAN	---	---	---	---	---	---	---	---	---	1.11	1.34	1.42
MAX	---	---	---	---	---	---	---	---	---	1.43	1.76	2.42
MIN	---	---	---	---	---	---	---	---	---	. 65	. 94	. 26

TEMPERATURE, WATER TOP (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP
1	---	---	---	---	---	---	--	---	---	26.3	30.0	28.9
2	---	---	---	---	---	---	---	---	---	26.5	30.1	28.7
3	---	---	---	---	--	---	--	---	---	26.8	29.7	28.7
4	--	---	---	---	---	---	---	---	---	27.1	29.2	28.8
5	---	---	---	---	---	---	---	---	---	27.7	29.3	28.8
6	--	--	---	---	--	--	---	---	---	28.0	29.5	28.7
7	-	---	-	-	---	---	---	---	---	28.2	29.1	28.6
8	-	---	---	---	---	---	---	---	---	28.5	28.4	28.4
9	-	--	---	---	---	--	--	---	--	28.5	27.9	28.4
10	---	--	---	---	---	--	-	--	--	28.4	28.0	28.1
11	--	---	---	---	---	---	---	---	---	28.4	28.0	28.1
12	---	--	---	---	-	---	---	---	---	28.6	28.1	28.0
13	-	--	---	---	---	---	---	---	---	28.5	28.6	27.9
14	---	---	---	---	--	--	--	--	--	28.4	28.9	27.6
15	--	---	---	---	-	--	--	--	--	28.5	28.7	27.2
16	--	---	---	---	---	---	---	---	---	28.6	28.5	27.1
17	--	---	-	-	---	-	--	---	---	28.8	28.9	26.9
18	--	--	---	---	---	---	---	---	---	29.1	28.9	26.6
19	--	---	---	---	---	---	---	---	---	29.2	28.9	26.5
20	--	--	---	---	---	---	---	---	---	29.3	28.3	26.3
21	---	---	---	---	---	---	---	---	---	29.4	27.8	26.0
22	--	--	---	---	---	---	---	---	---	29.4	28.2	25.7
23	---	---	---	---	---	---	---	---	---	29.4	28.5	25.2
24	---	---	---	---	---	---	--	---	27.5	29.5	28.5	24.9
25	--	---	---	---	---	---	---	---	27.3	29.7	28.5	24.8
26	--	---	---	---	--	---	--	---	27.4	29.9	28.6	25.0
27	--	---	---	---	---	---	---	---	27.4	30.0	28.8	25.4
28	---	---	---	-	---	---	--	---	27.1	29.9	29.1	25.6
29	---	---	---	---	---	---	---	--	26.7	29.9	29.2	26.0
30	--	---	---	---	---	---	---	---	26.6	29.6	29.4	26.2
31	---	---	---	---	---	---	---	---	---	29.8	29.2	
MEAN	---	-	---	---	---	---	--	---	---	28.7	28.8	27.1
MAX	---	---	---	---	---	---	---	---	---	30.0	30.1	28.9
MIN	---	---	---	---	---	---	---	---	---	26.3	27.8	24.8

TEMPERATURE, WATER BOTTOM (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	--	---	--	---	---	---	--	26.3	30.0	28.7
2	---	---	---	---	---	---	---	---	---	26.4	30.0	28.6
3	---	---	---	---	---	-	-	---	---	26.7	29.6	28.6
4	--	---	---	---	---	---	---	---	---	27.1	29.1	28.7
5	--	---	---	---	---	---	---	---	---	27.6	29.2	28.6
6	---	---	---	---	---	---	---	---	---	28.0	29.3	28.6
7	---	---	---	---	---	---	---	---	---	28.2	29.0	28.5
8	---	---	---	---	---	---	---	---	---	28.4	28.3	28.3
9	---	---	---	---	---	---	---	---	---	28.5	27.8	28.3
10	---	---	---	---	---	---	---	---	---	28.3	27.9	28.0
11	---	---	---	---	---	---	---	---	---	28.4	27.9	28.0
12	---	---	---	---	---	---	---	---	---	28.5	28.0	27.9
13	---	---	---	---	---	---	---	---	---	28.5	28.4	27.8
14	---	-	---	---	---	---	---	---	---	28.4	28.7	27.5
15	---	---	---	---	---	---	---	---	---	28.5	28.5	27.2
16	---	---	---	---	---	---	---	---	---	28.5	28.4	27.0
17	---	---	---	---	---	---	---	---	---	28.7	28.8	26.7
18	---	---	---	---	---	---	---	---	---	29.0	28.8	26.6
19	---	---	--	--	---	--	---	---	---	29.0	28.7	26.5
20	---	---	---	---	---	---	---	---	---	29.1	28.2	26.3
21	---	---	---	---	---	---	---	---	---	29.3	27.7	25.9
22	---	---	---	---	---	---	---	---	---	29.3	28.0	25.6
23	---	---	--	--	---	---	---	---	--	29.2	28.3	25.0
24	--	--	--	-	---	---	---	---	27.5	29.4	28.4	24.8
25	---	---	---	---	---	---	---	---	27.3	29.5	28.4	24.7
26	---	---	---	---	---	---	---	---	27.4	29.8	28.5	24.9
27	---	---	---	---	---	---	---	---	27.4	29.9	28.7	25.3
28	--	---	---	---	---	---	---	---	27.1	29.8	29.0	25.5
29	---	---	---	---	---	---	---	---	26.7	29.8	29.1	25.9
30	---	---	---	---	---	---	---	---	26.6	29.5	29.3	26.1
31	---	---	---	---	---	---	---	---	-	29.7	29.1	
MEAN	-	---	---	---	---	---	---	---	---	28.6	28.7	27.0
MAX	---	-	---	-	---	---	--	---	---	29.9	30.0	28.7
MIN	---	---	---	---	---	---	---	---	---	26.3	27.7	24.7

SALINITY TOP (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	ОС'	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	. 17	. 17	. 17
2	---	--	---	---	---	---	---	---	---	. 18	. 17	. 17
3	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
4	---	---	---	---	---	---	---	---	---	. 17	. 17	. 17
5	---	---	---	---	---	---	---	---	---	. 17	. 16	. 17
6	---	---	---	---	---	---	---	---	---	. 17	. 16	. 17
7	---	---	--	---	---	---	---	---	---	. 17	. 17	. 17
8	--	---	---	---	---	---	---	---	---	. 18	. 16	. 17
9	---	---	---	---	---	---	---	---	---	. 18	. 16	. 17
10	---	---	---	---	---	---	---	---	---	. 18	. 16	. 17
11	---	---	---	---	---	---	---	---	---	. 17	. 16	. 17
12	--	---	---	---	---	---	---	---	---	. 17	. 16	. 17
13	---	---	---	---	---	---	---	---	---	. 18	. 16	. 17
14	---	---	---	---	---	---	---	---	---	. 18	. 16	. 17
15	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
16	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
17	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
18	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
19	---	---	---	---	---	---	---	---	---	. 18	. 17	. 19
20	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
21	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
22	---	---	---	---	---	---	---	---	---	. 17	. 17	. 17
23	--	---	---	---	---	---	---	---	---	. 17	. 17	. 17
24	---	---	---	---	---	---	---	---	. 18	. 17	. 17	. 17
25	---	---	---	---	---	---	---	---	. 18	. 17	. 17	. 17
26	---	---	---	---	---	---	---	---	. 18	. 17	. 17	. 17
27	--	---	---	---	---	---	---	---	. 18	. 17	. 17	. 17
28	--	---	---	---	---	---	---	---	. 18	. 17	. 17	. 17
29	--	---	---	---	---	---	---	---	. 18	. 17	. 17	. 17
30	---	---	--	---	---	---	---	---	. 18	. 17	. 17	. 17
31	---	---	---	---	---	---	---	---	---	. 17	. 17	---
MEAN	---	---	---	---	---	---	---	---	---	. 17	. 17	. 17
MAX	-	---	---	---	---	---	---	---	--	. 18	. 17	. 19
MIN	---	---	---	---	---	---	-	---	---	. 17	. 16	. 17

02323592 SUWANNEE RIVER ABOVE GOPHER RIVER NEAR SUWANNEE, FL--Continued
SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	--	---	---	---	---	--	---	--	--	. 17	. 17	. 17
2	---	---	---	---	---	---	---	---	---	. 17	. 17	. 17
3	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
4	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
5	--	---	---	---	---	---	---	---	---	. 18	. 17	. 17
6	---	---	---	---	---	---	---	---	---	. 18	. 16	. 17
7	---	---	---	---	-	---	---	---	---	. 18	. 17	. 17
8	---	---	---	---	---	---	---	---	---	. 18	. 16	. 17
9	---	---	---	---	---	---	---	---	---	. 18	. 16	. 17
10	---	---	---	---	---	---	---	---	---	. 18	. 16	. 17
11	--	---	---	---	---	---	---	---	---	. 18	. 16	. 17
12	--	---	---	-	-	-	---	-	--	. 18	. 16	. 17
13	---	---	---	---	--	---	---	---	-	. 18	. 16	. 17
14	---	---	---	---	---	---	---	---	---	. 18	. 16	. 17
15	---	--	---	---	---	---	---	---	--	. 18	. 17	. 17
16	---	---	---	---	---	---	---	---	---	. 19	. 17	. 17
17	--	---	---	---	---	---	---	---	---	. 19	. 17	. 17
18	---	--	---	---	-	---	---	---	---	. 19	. 17	. 17
19	---	---	---	---	---	---	---	---	---	. 18	. 17	. 36
20	---	--	---	---	---	---	---	---	---	. 18	. 17	. 18
21	---	---	---	---	---	---	---	---	---	. 18	. 17	. 17
22	-	---	---	---	---	---	---	---	---	. 18	. 17	. 17
23	--	---	---	---	--	---	---	---	---	. 18	. 17	. 17
24	--	---	---	---	---	---	---	---	. 18	. 18	. 17	. 17
25	---	---	---	---	-	---	---	---	. 18	. 17	. 17	. 18
26	-	---	---	---	---	---	---	---	. 18	. 17	. 17	. 17
27	---	---	---	---	---	---	---	---	. 18	. 17	. 18	. 17
28	---	---	---	---	---	---	---	---	. 18	. 17	. 18	. 17
29	---	---	---	---	---	-	---	---	. 18	. 17	. 18	. 17
30	--	---	---	---	--	---	---	---	. 18	. 17	. 18	. 17
31	---	---	---	---	---	---	---	---	---	. 17	. 17	---
MEAN	---	---	---	---	---	---	---	---	---	. 18	. 17	. 18
MAX	---	---	---	---	---	---	---	---	---	. 19	. 18	. 36
MIN	---	---	---	---	---	--	---	---	---	. 17	. 16	. 17

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5110	2160	2700	4070	4050	4170	5810	5140	3330	4400	3890	3600
2	4010	6980	2930	3980	4480	4510	5520	5570	3570	3490	4080	4740
3	5230	4360	2680	3850	3800	4590	5040	5610	3320	3420	4450	4120
4	e5560	3760	3850	4150	4600	5320	6930	4990	3540	2810	4340	4570
5	e5400	3800	3110	6090	5840	5470	6250	4830	3170	3510	4020	4310
6	e6010	3620	5300	3270	4140	5100	4900	4610	4100	3330	3310	5250
7	4830	3910	4170	4780	4550	5020	5650	4630	3790	e3470	4640	4350
8	4540	3660	3920	3900	4350	4440	5070	4300	3240	5100	3710	4810
9	4520	4130	3780	4240	4520	4570	7490	3990	2370	3580	3670	4410
10	4930	4210	3780	4560	3640	4630	5360	4380	1830	3610	3870	5150
11	5220	4460	4350	4640	3730	3780	6090	4780	2780	4200	4160	5880
12	4770	4940	3600	4200	4240	6010	6070	4180	2810	3590	4330	6090
13	4380	3110	3450	3920	3170	4590	6260	4330	3510	3660	4340	6310
14	5100	3670	5440	5700	4350	3990	6310	4640	3020	3720	4360	6840
15	5050	4110	4100	2220	4920	2880	6430	5040	3070	3240	4120	6870
16	4090	4080	4460	2590	4170	4090	6900	4250	3600	3700	3640	7090
17	3670	3640	3150	3520	4790	5380	6480	3840	3790	4330	3600	11100
18	4140	2890	2370	3670	4580	5380	6830	3720	3510	4690	3790	7550
19	4060	3120	4560	4550	5010	3880	6210	3930	3540	3550	3930	8050
20	4210	3810	4210	5800	6190	5020	5570	3810	3330	3510	4150	6820
21	5070	4100	3960	5120	4930	4830	4910	3490	4110	4520	4100	7700
22	3830	4230	5710	3180	4390	4360	6270	3670	3090	3680	3670	7530
23	4430	3760	5120	4280	4170	4310	4980	3980	3320	4500	3410	7570
24	4630	3900	4170	6360	4510	3900	2350	4230	3230	3920	3070	7930
25	3790	3670	4900	3940	4840	4130	7360	4020	3010	4000	3790	7400
26	4020	4360	3060	4570	4510	4700	5210	4000	3540	4060	3700	8600
27	4160	4670	3920	3880	4470	3000	4690	3610	3760	e4040	3580	8440
28	4370	3660	3840	3940	5360	7280	4580	3230	3150	3950	3800	7920
29	3740	3470	4500	3080	4030	4660	6520	4290	3930	e3760	4010	7880
30	3400	4850	3660	4340	---	4260	6550	4700	4670	3990	3630	8030
31	4170	---	3630	4380	---	6880	---	3570	---	3730	3290	-
MEAN	4530	3970	3948	4218	4494	4682	5820	4302	3368	3841	3885	6564
MAX	6010	6980	5710	6360	6190	7280	7490	5610	4670	5100	4640	11100
MIN	3400	2160	2370	2220	3170	2880	2350	3230	1830	2810	3070	3600

WTR YR 2000 MEAN 4463 MAX 11100 MIN 1830
ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.19	1.36	-. 22	. 60	-. 04	. 63	. 49	. 88	. 92	1.29	1.43	1.69
2	1.35	1.40	. 32	. 46	-. 19	. 69	. 96	1.21	1.10	1.07	1.35	1.63
3	1.49	-. 56	. 87	. 63	. 17	. 86	1.53	1.18	1.19	. 93	1.27	1.58
4	e1.41	. 00	. 96	. 85	. 46	1.25	1.57	1.24	1.13	1.09	1.06	1.43
5	e1. 33	-. 02	1.36	-. 19	-. 19	. 54	-. 07	1.23	1.32	1.13	. 97	1.38
6	e1.16	. 14	1.27	-. 01	-. 12	. 65	. 80	1.10	1.13	1.11	1.10	1.23
7	. 79	. 44	. 38	. 20	. 14	. 64	1.06	. 96	. 59	1.19	1.12	1.12
8	1.27	. 81	. 49	. 39	. 33	. 91	1.43	1.02	. 61	. 99	. 84	. 80
9	1.49	1.10	. 64	. 80	. 17	1.11	-. 24	1.07	. 65	. 91	. 80	. 83
10	1.60	1.13	. 89	1.10	. 36	1.16	. 59	1.20	. 73	1.09	1.07	1.15
11	1.48	1.02	. 76	. 59	. 81	1.37	. 79	. 92	. 73	1.03	1.34	1.21
12	1.34	. 45	. 97	. 30	. 79	. 41	. 75	. 84	. 97	1.09	1.34	1.32
13	1.39	. 34	1.45	. 55	. 76	-. 07	. 66	. 93	. 88	1.01	1.35	1.45
14	1.13	. 75	. 71	-1.22	1.37	. 15	. 57	. 89	1.07	1.36	1.30	1.72
15	. 48	. 70	. 44	-. 78	. 50	. 52	. 91	. 63	1.32	1.56	1.05	1.86
16	-. 01	. 61	-. 33	. 17	. 39	1.09	1.11	. 46	1.36	1.84	1.00	2.13
17	. 78	. 36	-. 28	. 53	. 55	. 86	1.22	. 88	1.28	1.72	1.27	. 98
18	. 78	. 55	. 45	. 70	. 64	. 35	1.34	1.20	1.26	1.26	1.32	1.57
19	. 90	. 88	. 96	. 80	. 82	. 55	. 93	1.16	1.14	1.21	1.20	1.30
20	1.07	1.25	. 55	1.07	. 41	1.03	1.13	1.15	1.04	1.36	1.15	1.35
21	. 69	1.20	. 78	-. 09	-. 07	. 60	1.55	1.23	. 84	1.31	. 94	1.56
22	. 85	. 97	. 54	. 69	-. 24	. 41	. 86	1.38	. 82	1.48	. 65	1.37
23	1.12	. 89	. 05	1.19	. 15	. 19	1.00	1.22	. 98	1.28	. 71	1.17
24	. 56	. 92	-. 12	. 89	. 43	. 39	1.74	1.23	1.04	1.37	. 86	1.24
25	. 61	1.19	-. 43	-. 14	. 57	. 95	1.54	1.16	. 99	1.23	1.11	1.40
26	. 90	1.41	. 03	-. 40	. 69	1.09	. 64	. 99	. 99	1.06	1.20	1.49
27	1.06	. 63	. 31	-. 39	. 79	1.81	. 71	. 81	1.04	1.04	1.41	. 84
28	. 90	. 42	. 61	-. 46	. 32	1.30	1.42	. 92	1.28	1.15	1.41	. 70
29	. 59	. 58	. 22	. 26	. 46	1.05	. 98	1.02	1.56	1.30	1.43	. 51
30	1.00	-. 52	. 48	. 25	---	1.39	. 62	. 59	1.69	1.42	1.27	. 53
31	. 95	-	. 71	-. 13	---	. 76	---	. 64	---	1.58	1.39	---
MEAN	1.02	. 68	. 51	. 30	. 39	. 79	. 95	1.01	1.05	1.24	1.15	1.28
MAX	1.60	1.41	1.45	1.19	1.37	1.81	1.74	1.38	1.69	1.84	1.43	2.13
MIN	-. 01	-. 56	-. 43	-1.22	-. 24	-. 07	-. 24	. 46	. 59	. 91	. 65	. 51

TEMPERATURE, WATER TOP (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.0	22.3	18.3	16.5	15.3	20.8	23.1	23.0	27.8	27.5	28.8	28.8
2	25.7	22.3	17.3	17.1	15.6	20.9	23.2	23.3	28.2	27.8	28.8	28.4
3	25.9	21.6	16.9	17.7	15.9	21.0	23.4	23.5	28.6	28.0	29.0	27.9
4		20.6	17.1	18.3	16.2	21.4	23.2	23.9	28.9	28.2	29.1	27.7
5		20.0	17.5	18.5	16.2	21.3	22.3	24.3	28.9	28.6	29.3	27.4
6	---	20.0	17.9	18.2	16.0	21.2	21.7	24.7	28.8	29.2	29.4	26.9
7	24.6	20.1	17.8	18.5	15.8	21.3	21.8	25.0	28.6	29.8	29.4	26.6
8	24.5	20.1	17.9	18.6	15.9	21.5	21.8	25.4	28.6	29.9	29.6	26.8
9	24.7	20.3	18.4	18.8	16.1	21.8	20.9	25.8	28.6	29.7	29.7	27.0
10	25.0	20.6	18.9	19.1	16.3	22.0	20.6	26.3	28.3	30.0	29.7	27.1
11	25.2	20.9	19.5	19.2	16.6	22.2	21.1	26.7	27.9	30.3	29.9	27.2
12	25.5	21.1	19.7	19.2	17.2	22.1	21.5	27.0	27.8	30.4	29.4	27.3
13	25.8	21.1	19.6	19.2	17.7	21.5	22.0	27.3	27.9	29.9	29.2	27.5
14	25.9	21.1	19.7	18.5	18.0	21.3	21.6	27.4	28.2	29.4	29.4	27.6
15	25.8	21.1	19.5	17.3	18.7	21.4	21.3	27.4	28.4	29.2	29.5	27.7
16	25.4	20.8	18.9	16.9	19.0	21.7	21.5	27.3	28.6	29.4	29.5	27.4
17	25.0	20.2	17.8	16.8	19.7	21.7	22.1	27.4	28.3	29.0	29.5	26.0
18	24.8	19.8	17.3	17.2	20.3	21.8	22.3	27.2	28.5	28.8	29.7	24.8
19	24.7	19.7	17.4	17.5	20.8	21.8	22.6	27.1	28.8	28.8	29.7	24.9
20	24.6	20.0	17.5	17.8	21.0	21.9	23.0	27.2	29.1	29.4	29.6	25.6
21	24.1	20.2	17.7	17.5	20.6	22.0	23.4	27.3	29.1	29.4	29.4	25.7
22	23.3	20.4	18.0	17.0	19.9	22.1	23.2	27.3	28.7	29.4	29.2	25.6
23	22.7	20.5	18.1	16.8	19.6	22.1	23.0	27.4	28.8	29.0	29.2	25.8
24	21.8	20.8	17.7	16.9	19.8	22.1	23.1	27.5	28.4	28.4	29.3	26.2
25	21.1	21.2	17.0	16.1	20.1	22.4	23.1	27.8	28.1	28.0	29.3	26.3
26	20.9	21.4	16.2	14.9	20.4	22.6	23.1	28.2	27.9	28.2	29.2	26.5
27	20.9	21.2	15.9	14.3	20.7	22.7	23.0	28.6	27.9	28.5	29.1	26.2
28	20.9	20.7	15.9	13.8	20.8	22.5	22.9	28.7	28.0	28.7	28.9	25.6
29	21.1	20.4	15.7	14.2	20.8	22.7	23.0	28.8	27.9	28.9	28.6	25.0
30	21.4	19.7	15.6	14.9	---	22.7	23.1	28.6	27.5	29.0	28.7	24.4
31	21.9		15.9	15.2	---	23.0	---	28.0	---	28.9	28.9	
MEAN	---	20.7	17.7	17.2	18.3	21.9	22.4	26.6	28.4	29.0	29.3	26.6
MAX	---	22.3	19.7	19.2	21.0	23.0	23.4	28.8	29.1	30.4	29.9	28.8
MIN	---	19.7	15.6	13.8	15.3	20.8	20.6	23.0	27.5	27.5	28.6	24.4

TEMPERATURE, WATER BOTTOM (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	25.9	22.3	18.5	16.3	15.1	20.6	22.9	22.9	27.7	27.4	28.7	28.7
2	25.6	22.2	17.4	17.0	15.5	20.8	23.1	23.2	28.0	27.7	28.7	28.3
3	25.8	21.5	16.8	17.5	15.8	20.9	23.3	23.4	28.5	27.9	28.9	27.8
4	---	20.5	17.0	18.2	16.1	21.2	23.1	23.8	28.8	28.1	29.0	27.6
5	---	19.9	17.5	18.4	16.1	21.2	22.2	24.1	28.8	28.5	29.2	27.3
6	-	19.9	17.9	18.1	15.9	21.1	21.6	24.6	28.7	29.1	29.3	26.8
7	24.5	20.0	17.7	18.4	15.8	21.2	21.7	24.9	28.5	29.7	29.3	26.6
8	24.4	20.0	17.8	18.5	15.8	21.4	21.7	25.2	28.5	29.8	29.5	26.6
9	24.5	20.2	18.3	18.7	16.0	21.7	20.7	25.6	28.4	29.6	29.6	26.9
10	24.8	20.5	18.9	19.0	16.3	21.8	20.4	26.1	28.2	29.9	29.5	26.9
11	25.1	20.8	19.4	19.1	16.5	22.1	20.8	26.5	27.8	30.2	29.7	27.1
12	25.4	21.0	19.6	19.1	17.1	22.0	21.3	26.8	27.7	30.3	29.3	27.2
13	25.6	21.0	19.5	19.1	17.7	21.3	21.7	27.1	27.8	29.9	29.1	27.4
14	25.8	21.0	19.7	18.5	18.0	21.2	21.6	27.3	28.1	29.2	29.3	27.5
15	25.7	21.0	19.4	17.2	18.5	21.2	21.1	27.3	28.2	29.1	29.4	27.6
16	25.3	20.7	18.8	16.8	18.9	21.6	21.4	27.2	28.5	29.3	29.4	27.3
17	24.9	20.1	17.7	16.7	19.5	21.6	21.9	27.2	28.2	28.9	29.4	25.8
18	24.7	19.7	17.2	17.1	20.2	21.7	22.2	27.1	28.4	28.7	29.5	24.7
19	24.6	19.7	17.3	17.4	20.7	21.7	22.5	27.0	28.6	28.7	29.6	24.8
20	24.5	19.9	17.5	17.7	20.9	21.8	22.9	27.1	28.9	29.3	29.5	25.5
21	24.0	20.2	17.6	17.4	20.5	21.8	23.3	27.2	29.0	29.2	29.3	25.7
22	23.3	20.4	17.9	16.8	19.8	22.0	23.1	27.1	28.6	29.3	29.2	25.6
23	22.6	20.5	18.1	16.7	19.5	22.0	22.9	27.2	28.7	28.9	29.1	25.7
24	21.7	20.7	17.6	16.8	19.7	22.0	23.0	27.4	28.3	28.3	29.2	26.0
25	21.0	21.1	16.9	16.0	20.0	22.3	22.9	27.7	28.0	27.9	29.2	26.2
26	20.8	21.4	16.2	14.8	20.2	22.5	22.8	28.0	27.8	28.1	29.0	26.3
27	20.8	21.1	15.8	14.2	20.6	22.6	22.7	28.4	27.8	28.3	29.0	26.1
28	20.8	20.7	15.8	13.7	20.7	22.3	22.8	28.6	27.9	28.6	28.7	25.4
29	21.0	20.4	15.6	14.1	20.5	22.4	22.8	28.6	27.8	28.8	28.5	24.9
30	21.3	19.8	15.5	14.8	---	22.6	22.8	28.5	27.4	28.9	28.6	24.3
31	21.9	-	15.8	15.1	---	22.8	---	27.9	---	28.8	28.8	--
MEAN	---	20.6	17.6	17.1	18.2	21.7	22.2	26.5	28.3	28.9	29.2	26.5
MAX	---	22.3	19.7	19.1	20.9	22.8	23.3	28.6	29.0	30.3	29.7	28.7
MIN	---	19.7	15.5	13.7	15.1	20.6	20.4	22.9	27.4	27.4	28.5	24.3

DAY	ОС'	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 17	. 18	. 17	. 17	. 18	. 15	. 12	. 14	. 16	. 16	. 18	. 17
2	. 17	. 17	. 17	. 17	. 18	. 15	. 12	. 12	. 16	. 16	. 17	. 17
3	. 17	. 17	. 18	. 17	. 18	. 15	. 12	. 11	. 17	. 16	. 17	. 16
4	---	. 17	. 18	. 17	. 18	. 15	. 12	. 11	. 17	. 16	. 17	. 16
5	---	. 17	. 18	. 17	. 18	. 15	. 12	. 12	. 17	. 17	. 17	. 16
6	---	. 18	. 18	. 17	. 18	. 15	. 12	. 13	. 17	. 15	. 17	. 16
7	. 17	. 18	. 18	. 18	. 18	. 15	. 12	. 13	. 17	. 15	. 17	. 16
8	. 17	. 18	. 18	. 18	. 18	. 16	. 11	. 14	. 17	. 15	. 17	. 16
9	. 17	. 18	. 17	. 18	. 18	. 16	. 11	. 14	. 16	. 16	. 17	. 17
10	. 17	. 17	. 17	. 18	. 18	. 15	. 11	. 14	. 16	. 16	. 17	. 17
11	. 17	. 17	. 17	. 18	. 18	. 15	. 11	. 15	. 16	. 17	. 17	. 17
12	. 17	. 17	. 17	. 18	. 18	. 15	. 11	. 15	. 17	. 17	. 16	. 17
13	. 17	. 17	. 17	. 18	. 18	. 15	. 11	. 15	. 16	. 17	. 16	. 16
14	. 17	. 17	. 17	. 18	. 18	. 15	. 10	. 15	. 14	. 17	. 15	. 13
15	. 17	. 17	. 17	. 18	. 17	. 15	. 10	. 16	. 13	. 17	. 15	. 11
16	. 17	. 18	. 17	. 18	. 17	. 15	. 10	. 16	. 15	. 18	. 15	. 10
17	. 17	. 18	. 17	. 18	. 17	. 15	. 10	. 16	. 16	. 17	. 15	. 09
18	. 18	. 17	. 17	. 18	. 17	. 15	. 10	. 16	. 16	. 17	. 16	. 08
19	. 18	. 17	. 17	. 18	. 17	. 15	. 10	. 16	. 16	. 17	. 16	. 08
20	. 18	. 18	. 17	. 18	. 17	. 15	. 10	. 16	. 16	. 17	. 16	. 08
21	. 18	. 17	. 17	. 18	. 17	. 16	. 10	. 16	. 16	. 17	. 16	. 09
22	. 17	. 17	. 17	. 18	. 17	. 16	. 11	. 16	. 16	. 17	. 16	. 10
23	. 18	. 17	. 17	. 18	. 17	. 16	. 11	. 16	. 16	. 17	. 16	. 10
24	. 18	. 17	. 17	. 18	. 17	. 16	. 12	. 16	. 17	. 17	. 16	. 11
25	. 17	. 17	. 17	. 18	. 16	. 16	. 12	. 16	. 16	. 17	. 16	. 10
26	. 17	. 17	. 17	. 18	. 16	. 16	. 13	. 16	. 16	. 17	. 16	. 11
27	. 17	. 17	. 17	. 18	. 16	. 16	. 14	. 16	. 16	. 17	. 16	. 10
28	. 17	. 17	. 17	. 18	. 16	. 15	. 14	. 16	. 16	. 17	. 16	. 10
29	. 17	. 17	. 17	. 18	. 15	. 15	. 15	. 16	. 16	. 17	. 16	. 10
30	. 17	. 17	. 17	. 18	---	. 14	. 15	. 16	. 16	. 17	. 17	. 09
31	. 17	---	. 17	. 18	---	. 13	---	. 16	---	. 18	. 17	---
MEAN	---	. 17	. 17	. 18	. 17	. 15	. 12	. 15	. 16	. 17	. 16	. 13
MAX	---	. 18	. 18	. 18	. 18	. 16	. 15	. 16	. 17	. 18	. 18	. 17
MIN	---	. 17	. 17	. 17	. 15	. 13	. 10	. 11	. 13	. 15	. 15	. 08

SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 17	. 18	. 19	. 18	. 18	. 15	. 12	. 14	. 17	. 16	. 19	. 17
2	. 17	. 17	. 18	. 18	. 18	. 15	. 12	. 12	. 17	. 16	. 17	. 17
3	. 17	. 17	. 18	. 18	. 18	. 15	. 12	. 11	. 17	. 16	. 17	. 16
4	---	. 17	. 18	. 18	. 18	. 15	. 12	. 11	. 17	. 16	. 17	. 16
5	-	. 17	. 18	. 18	. 18	. 15	. 12	. 12	. 17	. 17	. 17	. 16
6	---	. 17	. 18	. 18	. 18	. 15	. 12	. 13	. 17	. 18	. 17	. 16
7	. 17	. 17	. 18	. 18	. 18	. 15	. 12	. 14	. 17	. 17	. 17	. 16
8	. 17	. 17	. 18	. 18	. 18	. 15	. 12	. 14	. 17	. 16	. 17	. 16
9	. 17	. 17	. 18	. 18	. 18	. 15	. 11	. 14	. 17	. 16	. 17	. 17
10	. 17	. 18	. 17	. 18	. 18	. 15	. 11	. 15	. 17	. 16	. 17	. 17
11	. 17	. 18	. 17	. 18	. 18	. 15	. 11	. 15	. 17	. 17	. 17	. 17
12	. 17	. 17	. 18	. 18	. 18	. 15	. 11	. 15	. 17	. 17	. 16	. 17
13	. 17	. 18	. 18	. 18	. 17	. 15	. 11	. 15	. 17	. 17	. 16	. 16
14	. 17	. 18	. 17	. 18	. 17	. 15	. 11	. 16	. 16	. 17	. 15	. 14
15	. 17	. 18	. 17	. 18	. 17	. 15	. 10	. 16	. 16	. 17	. 15	. 11
16	. 17	. 18	. 17	. 18	. 17	. 15	. 10	. 16	. 16	. 19	. 15	. 10
17	. 17	. 18	. 18	. 18	. 17	. 15	. 10	. 16	. 16	. 17	. 15	. 09
18	. 17	. 18	. 18	. 18	. 17	. 15	. 10	. 16	. 16	. 17	. 16	. 09
19	. 17	. 18	. 18	. 18	. 17	. 15	. 10	. 16	. 16	. 17	. 16	. 09
20	. 18	. 18	. 18	. 18	. 17	. 15	. 10	. 16	. 16	. 17	. 16	. 09
21	. 18	. 18	. 18	. 18	. 17	. 16	. 10	. 16	. 17	. 17	. 16	. 09
22	. 17	. 18	. 18	. 18	. 17	. 16	. 11	. 16	. 17	. 17	. 16	. 10
23	. 17	. 18	. 18	. 18	. 17	. 16	. 11	. 17	. 17	. 17	. 16	. 11
24	. 18	. 18	. 18	. 17	. 17	. 16	. 12	. 16	. 17	. 17	. 16	. 11
25	. 18	. 18	. 18	. 17	. 17	. 16	. 13	. 16	. 17	. 17	. 16	. 11
26	. 18	. 18	. 18	. 17	. 16	. 16	. 13	. 16	. 17	. 17	. 16	. 11
27	. 17	. 18	. 18	. 17	. 16	. 16	. 14	. 16	. 17	. 17	. 16	. 10
28	. 17	. 18	. 18	. 17	. 16	. 15	. 14	. 16	. 17	. 17	. 17	. 10
29	. 17	. 18	. 18	. 18	. 15	. 15	. 15	. 16	. 16	. 17	. 16	. 09
30	. 17	. 18	. 18	. 18	---	. 14	. 15	. 17	. 18	. 17	. 17	. 09
31	. 17	---	. 18	. 18	---	. 13	.	. 17	---	. 19	. 17	---
MEAN	---	. 18	. 18	. 18	. 17	. 15	. 12	. 15	. 17	. 17	. 16	. 13
MAX	---	. 18	. 19	. 18	. 18	. 16	. 15	. 17	. 18	. 19	. 19	. 17
MIN	---	. 17	. 17	. 17	. 15	. 13	. 10	. 11	. 16	. 16	. 15	. 09

LOCATION.-- Lat. $29^{\circ} 16^{\prime} 52^{\prime \prime}$, long. $83^{\circ} 06^{\prime} 41^{\prime \prime}$, in $\mathrm{NE} 1 / 4 \mathrm{sec} .9$, T. 14 S., R. 12E., Dixie County, hydrologic unit 03110205 , on right bank, 0.7 mi downstream of Bull Creek and 1.2 mi. above the mouth of East Pass.

DRAINAGE AREA.--Indeterminate.
PERIOD OF RECORD.-- August 1995 to October 2000.
GAGE.--Water-stage recorder; datum of gage is 4.38 ft . below National Geodetic Vertical Datum (NGVD) of 1929; water-quality measured at three elevations, 1.61 ft . (top), 5.31 ft . (middle), and 9.37 ft . (bottom) below NGVD 1929.

REMARKS.-- Tidally-influenced site. Previous to March 1999, gage was located about 30 ft . southwest of present location and water temperature, salinity were measured at one undetermined elevation. Record is rated as follows: 1995: gage height, water temperature, salinity -- fair to poor; estimated periods are poor; 1996: gage height, water temperature, salinity -- fair to poor; estimated periods are poor; 1997 :gage height, water temperature, salinity -- fair to poor; estimated periods are poor; 1998: gage height -- poor; water temperature, salinity -- fair to poor; estimated periods are poor; 1999: gage height, water temperature, salinity -- previous to March 1999, fair to poor; March to September 1999, gage height--fair, water temperature and salinity--fair to poor; estimated periods are poor; 2000: elevation -- good except for estimated periods, which are poor; water temperature and salinity, top sensor--poor (October 1999) to fair (rest of period), middle sensor, fair (Oct. and Nov. 1999) to good (rest of period), bottom sensor-- fair (Oct. 1999) to good (rest of period).

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995 DAILY MEAN VALUES

DAY	ОСт	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	--	--	15.45
2	--	--	-	---	---	--	---	---	---		---	15.38
3	--	---	---	---	---	---	---	---	---	---	---	15.11
4	---	---	---	---	---	---	---	---	---	--	--	14.96
5	--	---	-	---	---	--	---	--	-	---	---	14.88
6	---	--	--	---	--	--	---	---	---	---	---	15.11
7	--	---	---	---	---	---	---	---	---	---	---	15.66
8	---	---	---	---	---	---	---	---	---	---	---	15.72
9	---	---	---	---	---	---	---	--	---	--	--	15.64
10	--	--	---	---	---	---	---	---	---	---	---	15.53
11	---	---	---	---	--	--	--	--	---	---	-	15.42
12	---	---	---	---	---	---	---	---	---	---	---	15.51
13	--	---	---	---	---	---	---	---	---	---	---	15.47
14	---	---	--	---	---	---	---	---	---	---	--	15.54
15	--	--	---	---	---	---	---	---	---	---	---	15.37
16	---	--	---	---	---	---	---	---	---	---	---	15.43
17	---	---	---	--	--	--	--	--	---	---	---	15.47
18	--	---	---	---	---	---	---	---	---	---	---	15.39
19	--	---	---	---	---	---	---	---	---	---	--	15.31
20	--	--	---	---	---	---	---	---	---	---	---	15.27
21	---	--	--	---	--	--	---	---	---	---	---	15.18
22	--	---	---	---	---	--	---	--	---	---	--	15.61
23	--	---	---	---	---	---	---	---	---	---	---	15.65
24	--	--	---	---	---	---	---	---	---	---	15.17	15.46
25	--	---	---	---	---	---	---	---	---	---	16.14	15.51
26	---	---	---	---	--	---	--	---	---	---	16.43	15.82
27	--	--	-	---	---	---	---	---	---	---	16.05	15.76
28	---	---	-	---	---	--	---	---	---	---	15.72	15.49
29	---	---	---	---	---	---	---	--	--	---	15.07	15.48
30	---	---	--	---	--	---	---	---	---	---	14.62	15.18
31	--	---	---	---	---	---	---	---	---	---	14.86	--
MEAN	---	---	--	---	---	--	---	---	---	---	---	15.43
MAX	---	---	--	---	--	---	---	---	---	---	---	15.82
MIN	---	---	---	---	---	---	---	--	--	---	---	14.88

291652083064100 EAST PASS SUWANNEE RIVER AT MOUTH NEAR SUWANNEE, FL--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	---	---	27.6
2	---	---	---	---	---	---	---	---	---	---	---	28.0
3	--	---	-	---	---	---	---	---	---	---	26.0	28.0
4	---	---	-	---	---	---	---	---	---	---	26.7	27.7
5	---	---	---	---	---	---	---	---	---	---	---	27.3
6	---	---	---	---	---	---	---	---	---	---	---	26.5
7	---	---	---	---	---	---	---	---	---	---	---	26.1
8	---	---	---	---	---	---	---	---	---	---	--	26.3
9	---	---	---	---	---	---	---	---	---	---	---	27.1
10	---	---	---	---	---	---	---	---	---	---	---	27.4
11	---	---	---	---	---	---	---	---	---	---	---	27.5
12	---	---	---	---	---	---	---	---	---	---	---	28.0
13	---	---	---	---	---	---	---	---	---	---	---	28.5
14	---	---	---	---	---	---	---	---	---	---	---	28.9
15	---	---	---	---	---	---	---	---	---	---	---	28.6
16	---	---	---	---	---	---	---	---	---	---	---	28.7
17	---	---	---	---	---	---	---	---	---	---	---	29.0
18	---	---	---	---	---	---	---	---	---	---	---	28.8
19	---	---	---	---	---	---	---	---	---	---	---	28.5
20	---	---	---	---	---	---	---	---	---	---	---	28.4
21	---	---	---	---	---	---	---	---	---	---	---	28.1
22	---	---	---	---	---	---	---	---	---	---	---	28.2
23	---	---	---	---	---	---	---	---	---	---	---	28.6
24	--	---	---	---	---	---	---	---	---	---	27.9	28.0
25	---	---	---	---	---	---	---	---	---	---	28.2	27.0
26	---	---	---	---	---	---	---	---	---	---	28.6	26.9
27	---	---	---	---	---	---	---	---	---	---	28.9	26.8
28	---	---	---	---	---	---	---	---	---	---	29.1	26.7
29	---	---	---	---	---	---	---	---	---	---	28.6	26.7
30	---	---	---	---	---	---	---	---	---	---	27.9	26.5
31	---	---	---	---	---	---	---	---	---	---	27.5	
MEAN	---	---	---	---	---	---	---	---	---	---	---	27.7
MAX	---	---	---	---	---	-	--	-	--	---	---	29.0
MIN	---	---	---	---	---	---	---	---	---	---	---	26.1

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	---	---	4.7
2	-	---	---	---	---	---	---	---	-	-	--	5.2
3	---	---	---	---	---	---	---	---	---	-	-	4.3
4	---	--	---	---	---	---	---	---	-	--	-	4.4
5	-	-	--	-	-	-	-	-	-	---	---	5.0
6	---	---	---	---	---	---	---	---	---	---	---	4.8
7	---	--	---	--	-	---	---	---	-	--	-	7.5
8	---	---	---	---	---	---	---	---	---	--	---	8.4
9	---	---	---	---	---	---	---	---	---	---	---	7.9
10	---	---	---	---	---	---	---	---	---	---	-	6.7
11	---	---	---	---	---	---	---	---	---	---	---	6.3
12	---	---	---	---	---	---	---	---	---	---	---	6.5
13	-	---	-	---	---	---	---	--	-	-	---	5.2
14	---	---	---	---	---	---	---	---	---	---	--	5.6
15	---	---	---	---	---	---	---	---	---	---	---	4.4
16	-	---	---	---	---	---	---	---	-	-	-	4.9
17	---	---	---	---	---	---	---	---	---	---	---	6.9
18	---	---	---	---	---	---	---	---	---	--	---	6.3
19	-	-	---	-	-	---	---	---	---	-	-	6.3
20	---	---	---	-	--	---	--	--	-	--	---	7.4
21	---	---	---	---	---	---	---	---	---	--	---	7.1
22	---	-	---	---	---	---	---	---	---	--	---	9.2
23	---	---	---	---	--	---	---	---	---	---	---	8.1
24	---	---	---	---	---	---	---	---	---	---	5.4	6.4
25	---	---	---	---	---	---	---	---	--	--	11.5	8.4
26	---	-	---	-	---	---	---	---	---	---	11.5	9.4
27	---	---	---	---	---	---	---	---	---	--	6.8	7.5
28	---	---	---	---	---	---	---	---	---	---	4.3	7.0
29	---	---	---	---	---	---	---	---	-	---	4.2	7.5
30	---	---	---	---	---	---	---	---	---	---	2.3	4.5
31	---	---	---	---	---	---	---	---	---	---	2.6	---
MEAN	-	-	---	---	---	---	---	---	-	-	---	6.5
MAX	---	---	---	---	---	---	---	---	---	---	---	9.4
MIN	---	---	---	---	---	---	---	---	---	---	---	4.3

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15.24	15.47	14.23	15.65	14.96	14.47	14.92	14.28	14.76	15.05	15.34	15.25
2	15.46	---	14.34	15.51	15.58	14.75	13.97	14.68	14.89	15.12	15.39	15.26
3	16.13	---	14.46	14.67	14.70	14.11	14.54	15.06	15.11	15.31	15.32	15.24
4	18.18		14.43	13.98	13.33	14.23	15.11	15.23	15.20	15.50	15.11	15.12
5	16.73	---	14.47	14.34	12.99	15.01	15.17	15.24	15.04	16.03	15.05	15.17
6	15.70	---	14.49	14.51	13.84	15.46	15.46	15.31	14.86	15.47	15.05	15.36
7	15.41	15.54	14.76	14.84	14.28	15.57	15.12	15.25	14.91	15.01	15.07	---
8	15.00	14.44	14.39	13.00	14.79	13.69	15.19	15.26	15.16	15.08	15.08	---
9	14.72	13.67	14.66	13.70	14.98	13.12	15.08	15.22	15.74	15.26	15.06	--
10	15.31	14.67	13.21	13.96	14.92	12.98	14.29	15.02	15.29	14.77	15.29	---
11	15.40	15.48	13.30	14.52	15.21	12.74	14.41	14.88	15.31	14.60	15.47	
12	15.07	13.66	14.00	14.59	14.15	13.84	14.96	14.74	15.17	14.65	15.71	---
13	15.33	14.47	14.43	13.43	14.01	14.62	15.32	14.50	15.06	14.95	15.36	15.42
14	15.75	14.45	14.75	14.33	14.94	14.70	15.29	14.34	14.93	15.15	15.23	15.41
15	14.58	14.11	14.63	14.43	15.11	14.98	15.18	14.58	15.03	15.03	15.24	15.60
16	14.03	14.47	14.92	14.40	14.28	15.21	14.72	14.84	15.07	14.89	15.09	16.42
17	14.23	14.75	14.79	14.60	13.74	15.32	14.65	14.93	14.95	14.99	15.13	16.72
18	14.81	14.67	15.31	15.03	14.50	15.69	15.23	15.00	15.01	14.79	15.20	16.52
19	15.40	14.73	15.93	14.55	15.06	15.82	15.34	14.93	15.09	14.87	14.85	16.20
20	15.56	14.82	14.52	13.78	15.14	14.65	15.28	14.98	15.13	14.82	14.89	16.18
21	14.71	14.70	14.29	14.03	14.50	14.22	15.12	15.18	15.01	14.97	14.75	16.66
22	14.79	14.21	14.36	13.56	14.68	14.34	15.12	15.02	14.93	14.96	15.07	16.63
23	15.19	14.90	14.16	14.37	14.72	14.55	15.27	15.02	14.79	15.20	15.14	16.07
24	15.19	14.99	13.85	15.20	14.71	14.77	14.80	14.80	14.65	15.44	15.16	16.47
25	15.33	14.34	14.20	13.77	14.55	15.20	14.99	14.78	14.71	15.26	15.09	16.65
26	15.53	14.50	14.42	15.01	14.58	14.85	15.26	14.89	14.65	14.84	15.05	16.93
27	15.96	15.04	14.58	14.77	14.73	15.18	14.89	14.92	14.44	14.96	15.21	16.88
28	15.66	15.17	14.44	13.56	14.85	15.32	14.79	14.95	14.34	15.04	15.28	16.87
29	14.15	14.97	13.86	14.81	14.25	14.89	15.39	15.17	14.37	15.13	15.04	16.83
30	14.56	13.87	14.65	14.79	---	14.76	15.56	14.97	14.66	15.31	15.09	16.66
31	15.11	---	15.19	14.98	---	14.98	---	14.65	---	15.43	15.15	---
MEAN	15.30	---	14.45	14.41	14.55	14.65	15.01	14.92	14.94	15.09	15.16	---
MAX	18.18	---	15.93	15.65	15.58	15.82	15.56	15.31	15.74	16.03	15.71	---
MIN	14.03	---	13.21	13.00	12.99	12.74	13.97	14.28	14.34	14.60	14.75	---

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	25.7	21.4	16.5	12.5	16.4	17.5	17.1	23.4	25.8	28.0	28.8	26.9
2	25.8	---	16.6	14.2	16.5	16.5	17.5	23.4	25.3	28.5	27.8	26.6
3	26.1	---	16.9	14.8	16.6	16.7	17.9	24.1	25.5	28.2	27.1	26.7
4	26.6	---	17.3	14.5	15.6	16.9	---	24.9	25.9	27.9	27.0	27.1
5	26.4	---	17.9	14.1	14.1	16.9	---	25.5	26.5	27.6	27.4	27.8
6	26.3	---	18.5	14.3	12.3	17.9	---	25.8	27.2	27.1	27.7	28.4
7	26.2	20.9	18.8	13.8	12.4	18.8	---	26.2	27.4	26.5	28.3	27.9
8	26.1	20.9	18.3	13.4	13.1	18.0	---	26.0	27.1	26.9	28.4	28.2
9	25.8	19.4	18.0	11.5	14.3	15.8	---	25.9	26.3	27.0	28.7	28.0
10	25.4	18.5	17.0	11.7	14.8	14.7	---	25.5	25.9	26.3	29.0	---
11	25.4	18.6	15.3	11.8	15.4	13.5	---	25.4	26.5	27.0	28.7	---
12	25.2	18.2	14.4	12.4	15.4	13.0	---	25.4	27.3	27.3	27.1	---
13	25.4	17.5	14.6	12.5	14.8	13.2	---	25.0	27.8	28.1	26.8	27.7
14	26.1	17.1	15.1	12.6	14.4	14.1	---	24.9	28.2	28.3	27.0	27.3
15	24.6	16.4	16.0	13.0	15.1	15.0	---	24.6	28.2	28.7	27.5	27.4
16	23.2	15.5	16.6	13.0	15.3	16.3	---	25.0	27.0	28.6	27.8	27.1
17	22.6	15.4	16.8	13.5	13.8	17.2	---	25.5	26.7	28.4	27.9	27.3
18	22.3	15.5	17.3	14.5	12.7	17.7	19.4	25.9	27.1	28.4	27.9	27.7
19	22.3	15.6	17.8	15.2	13.3	17.2	20.0	26.5	27.2	28.8	27.8	27.6
20	22.5	15.7	16.7	14.6	14.1	15.3	20.8	27.0	27.2	29.0	27.5	27.1
21	21.4	16.0	14.7	13.8	15.9	14.8	21.6	26.6	27.6	29.1	27.4	26.4
22	20.5	15.9	13.6	14.7	16.2	14.9	22.1	26.3	28.0	29.1	27.4	26.1
23	20.6	15.1	13.2	14.2	17.2	15.5	22.6	27.0	28.3	29.2	27.5	25.7
24	21.4	15.4	12.7	14.4	18.0	16.0	22.8	26.8	29.0	29.0	27.8	25.9
25	22.2	16.0	11.5	14.8	19.3	16.7	22.5	27.0	29.6	28.7	27.7	25.9
26	23.0	16.1	11.3	14.1	19.6	17.5	22.7	27.3	29.8	28.9	27.5	25.8
27	23.7	16.3	11.1	15.3	19.8	17.6	23.1	27.6	29.3	29.4	27.8	25.9
28	23.8	17.0	11.1	14.9	19.9	17.3	23.7	27.6	28.6	29.5	28.1	26.3
29	22.5	17.5	11.7	14.3	19.5	17.4	24.4	27.1	28.1	29.1	28.1	26.5
30	21.7	17.3	10.9	15.0	-	17.2	24.3	27.3	27.7	29.1	27.7	26.5
31	21.2	---	11.2	15.6	---	17.0	---	26.8	---	29.0	27.0	---
MEAN	23.9	---	15.1	13.8	15.7	16.3	---	25.9	27.4	28.3	27.7	---
MAX	26.6	---	18.8	15.6	19.9	18.8	---	27.6	29.8	29.5	29.0	---
MIN	20.5	---	10.9	11.5	12.3	13.0	---	23.4	25.3	26.3	26.8	---

291652083064100 EAST PASS SUWANNEE RIVER AT MOUTH NEAR SUWANNEE, FL--Continued.
SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.4	---	3.3	11.5	4.5	-	. 53	. 13	--	--	---	4.8
2	6.4	---	4.3	8.9	12.5	2.1	---	. 46	---	---	3.5	3.8
3	11.6	--	6.8	3.7	3.5	---	. 31	1.6	--	--	1.9	3.0
4	26.6	---	---	---	---	---	1.3	. 97	---	---	. 88	---
5	---	---	-	---	---	5.6	. 77	1.1	---	---	1.5	---
6	---	---	---	---	---	7.5	. 79	. 91	---	---	1.5	---
7	--	10.8	5.3	6.7	---	6.2	. 24	. 71	---	---	2.6	---
8	-	4.1	-	---	6.3	---	. 68	. 17	---	---	3.8	---
9	--	-	7.0	---	4.6	---	. 06	. 15	---	-	5.2	---
10	--	3.9	---	---	4.1	--	. 06	---	---	---	6.4	-
11	---	8.5	---	5.7	3.2	---	. 06	---	-	---	5.7	3.4
12	---	---	---	4.0	. 64	---	. 06	---	---	---	4.1	--
13	5.3	2.5	4.2	---	---	-	. 06	---	---	---	1.8	---
14	8.7	3.1	5.8	1.8	2.3	2.2	. 07	---	---	---	2.2	---
15	---	2.6	5.4	1.5	2.3	3.2	. 42	---	---	---	3.4	--
16	--	4.7	6.3	---	1.1	2.3	. 46	---	---	2.4	4.0	5.6
17	--	6.8	6.1	---	---	1.5	. 07	---	--	2.8	3.8	4.0
18	---	5.7	10.7	9.2	-	2.6	. 32	---	--	2.1	2.9	2.4
19	--	7.8	11.1	5.5	4.4	3.8	. 15	---	---	3.0	2.7	2.5
20	--	9.6	3.7	---	4.1	1.7	. 12	---	--	3.2	3.3	2.7
21	---	9.0	---	---	2.4	. 24	. 12	---	---	2.5	2.6	5.1
22	--		---	---	4.3	. 77	. 09	---	---	1.7	5.0	3.6
23	---	9.1	---	---	1.6	1.5	. 09	---	---	2.1	5.2	---
24	---	8.4	---	8.5	. 77	1.5	. 10	--	---	2.1	5.8	---
25	-	---	---	---	1.1	2.9	. 10	---	---	1.1	6.7	---
26	---	--	6.8	6.0	1.0	. 53	. 11	---	---	1.0	5.7	7.5
27	---	7.5	7.5	1.9	. 87	1.8	. 11	---	---	4.5	5.5	5.5
28	-	5.8	6.4	---	1.2	. 98	. 12	--	---	4.5	5.5	5.5
29	---	3.4	3.1	3.8	. 47	. 26	. 72	---	---	4.8	5.0	5.7
30	--	. 91	7.0	3.8	---	. 41	1.3	---	---	5.1	5.6	5.4
31	---	---	10.2	5.0	---	. 34	---	---	---	---	4.7	---
MEAN	---	---	---	---	---	---	---	---	---	---	---	---
MAX	-	-	-	---	---	---	--	--	---	--	---	---
MIN	---	---	---	---	--	--	--	-	---	--	---	---

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997
DAILY MEAN VALUES

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.6	23.6	18.5	18.7	15.8	18.3	21.1	23.2	25.1	28.5	27.5	27.5
2	26.1	23.1	18.9	19.0	15.9	18.4	21.0	23.7	24.7	28.6	27.0	27.6
3	25.6	21.6	18.6	18.9	16.1	18.6	20.9	24.3	24.9	29.2	27.7	28.1
4	25.1	20.7	18.1	19.0	16.3	19.1	---	23.6	25.4	29.5	27.9	28.2
5	23.8	20.7	17.3	19.4	16.7	20.1	---	23.1	24.9	28.2	27.9	26.9
6	23.2	21.1	17.7	19.8	16.7	20.3	---	23.0	24.1	27.2	28.3	26.6
7	---	21.7	18.1	20.0	16.8	19.6	---	23.4	23.6	27.8	28.6	26.5
8	---	21.9	17.7	19.6	17.2	19.7	---	23.6	23.9	28.3	27.8	27.1
9	---	20.3	17.2	19.4	16.5	20.4	---	24.1	23.4	28.3	27.3	---
10	22.2	19.3	16.6	18.0	16.2	20.8	---	23.7	23.6	27.5	27.6	27.2
11	21.9	18.8	16.5	16.7	16.1	21.0	21.2	23.3	23.9	27.3	27.8	27.1
12	21.7	18.2	16.9	16.5	16.0	20.9	21.4	22.8	25.2	27.5	28.3	27.5
13	21.4	18.0	17.6	15.5	16.3	21.1	22.0	23.1	26.4	27.8	28.8	27.9
14	21.5	18.2	17.8	15.7	17.3	20.9	21.3	23.2	26.4	28.5	28.8	28.2
15	21.8	17.9	17.7	15.1	17.4	20.6	---	23.6	26.7	28.8	28.9	28.4
16	21.7	17.5	17.5	15.4	16.7	20.1	---	24.0	27.2	29.1	28.8	28.6
17	21.9	17.7	17.1	14.2	16.5	19.8	21.0	24.2	27.7	29.0	28.9	28.1
18	22.1	18.4	16.8	13.1	16.5	20.0	20.3	24.8	27.9	28.7	28.8	28.1
19	20.9	18.9	15.5	12.2	16.7	20.4	20.3	25.1	27.5	27.8	29.0	28.4
20	20.6	19.3	14.1	12.0	17.3	20.4	20.6	25.7	27.2	27.3	29.3	28.6
21	20.5	19.9	13.3	12.1	17.9	20.5	21.5	25.9	27.5	27.9	29.0	28.9
22	20.5	20.0	13.2	12.6	17.8	---	22.2	26.3	28.0	28.5	28.7	28.8
23	21.0	18.7	13.7	13.2	16.9	---	22.4	25.3	28.3	28.8	28.1	28.4
24	20.8	18.7	14.6	14.0	16.7	---	22.2	25.3	27.5	28.8	27.5	28.6
25	21.2	19.0	15.6	14.4	16.4	---	22.4	25.6	27.5	28.9	27.5	28.3
26	22.0	19.4	16.1	14.0	16.9	---	22.7	25.8	27.6	29.0	27.4	27.4
27	22.4	18.8	16.5	14.4	17.8	---	22.8	26.0	27.8	28.5	27.5	26.8
28	22.6	18.4	17.5	15.3	18.2	---	23.2	25.4	28.1	28.0	27.5	26.7
29	23.2	18.4	17.8	16.2	---	---	22.7	25.3	28.6	27.9	27.6	26.3
30	23.4	18.5	18.2	16.0	---	---	22.9	25.0	28.8	28.2	27.8	26.6
31	23.3		18.4	15.6	---	21.8	---	25.2	---	28.4	27.7	---
MEAN	---	19.6	16.8	16.0	16.8	---	---	24.4	26.3	28.3	28.1	---
MAX	---	23.6	18.9	20.0	18.2	---	---	26.3	28.8	29.5	29.3	---
MIN	---	17.5	13.2	12.0	15.8	---	---	22.8	23.4	27.2	27.0	---

291652083064100 EAST PASS SUWANNEE RIVER AT MOUTH NEAR SUWANNEE, FL--Continued.
SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.0	1.6	9.1	3.6	. 27	. 15	. 09	. 33	---	2.9	1.9	3.4
2	4.5	. 86	1.6	2.9	. 09	. 11	. 10	. 45	--	2.1	3.1	6.7
3	3.8	. 16	2.9	1.8	. 60	. 05	1.3	1.1	---	2.6	2.7	7.4
4	4.4	. 16	2.5	2.4	2.8	. 08	---	. 15	---	2.7	1.6	5.6
5	. 35	1.5	6.8	1.8	2.8	. 55	---	. 36	---	1.3	1.1	2.3
6	. 81	4.6	4.5	1.3	3.6	. 15	---	1.5	---	. 99	. 87	2.7
7	---	6.6	4.5	2.8	3.8	. 06	---	1.3	-	. 27	. 89	4.4
8	---	4.8	1.7	4.4	3.3	. 46	---	1.6	-	. 60	. 50	5.8
9	---	1.2	. 56	6.0	. 91	1.5	-	. 65	---	2.4	. 57	---
10	4.5	2.5	1.8	3.8	1.2	1.4	---	. 15	---	. 88	. 68	4.5
11	2.8	1.8	3.0	3.2	. 78	. 52	2.3	. 69	--	. 16	1.1	3.4
12	. 93	1.6	2.8	. 91	1.0	. 34	3.8	. 94	3.7	. 32	2.1	5.4
13	. 29	1.5	3.7	. 24	3.0	. 77	1.2	1.5	2.5	1.0	2.8	7.5
14	2.4	1.2	3.8	. 20	1.3	. 17	. 14	. 14	1.2	2.0	---	8.1
15	3.7	. 74	3.7	2.1	. 10	. 07	---	. 17	. 94	2.1	--	8.0
16	3.8	. 34	3.9	. 81	. 10	. 08	---	. 14	1.8	2.1	--	8.2
17	4.4	5.3	6.6	. 11	. 10	. 08	1.9	. 30	1.1	2.1	--	7.5
18	4.2	7.8	5.4	. 09	. 15	. 14	. 47	. 98	1.1	2.7	---	6.6
19	. 18	6.8	. 49	. 96	. 84	. 23	2.0	1.2	. 54	3.0	5.1	6.8
20	2.4	5.9	.17	. 97	1.3	. 14	2.7	1.4	. 80	2.9	4.6	7.0
21	5.5	4.9	. 25	1.2	2.1	. 17	2.5	1.4	2.2	1.6	3.7	6.0
22	5.2	1.9	1.8	2.3	1.0	-	2.2	2.0	2.5	2.1	2.7	4.4
23	4.8	3.6	5.1	2.3	. 11	---	2.7	---	2.7	3.1	2.3	3.8
24	3.8	5.8	5.2	2.2	. 06	-	1.0	--	1.3	1.5	1.6	5.1
25	5.3	7.6	2.6	2.2	. 05	---	2.4	---	1.0	1.0	1.3	4.8
26	4.3	3.5	3.3	. 39	. 46	-	1.7	-	. 78	. 89	2.1	4.2
27	3.3	. 36	4.7	1.3	. 11	---	2.6	---	1.3	1.0	4.4	6.1
28	4.2	. 41	3.6	. 77	. 07	---	7.7	---	. 88	. 27	5.2	7.3
29	3.6	1.9	3.6	1.7	---	---	. 16	---	1.7	. 53	3.2	4.9
30	2.9	6.8	2.4	. 26	---	---	. 17	---	3.1	1.1	2.2	6.2
31	2.0	---	2.2	. 29	---	---	---	---	---	. 91	3.0	---
MEAN	---	3.1	3.4	1.8	1.1	---	---	---	---	1.6	---	---
MAX	---	7.8	9.1	6.0	3.8	-	---	---	--	3.1	--	-
MIN	---	. 16	. 17	. 09	. 05	---	---	---	---	. 16	---	---

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	14.64	---	---	---	---	---	15.23	15.11	14.92	15.19
2		---	14.53			---	---	---	15.23	14.90	14.75	15.48
3	---	---	14.69	---	---	---	---	---	15.07	14.64	14.89	17.69
4	---	---	15.02	---	---	14.69	---	---	15.24	14.57	15.03	15.38
5			14.18	---		15.36	---	---	15.30	14.59	15.04	15.14
6	---	---	14.00	---	---	---	---	---	15.32	14.90	15.00	15.27
7		---	14.01	---		---	---	--	14.83	15.07	15.23	15.36
8	---	---	14.77	---		---	---	16.00	14.76	15.03	15.18	15.59
9	---	---	15.12	---	---	---	---	15.46	15.21	15.16	14.94	15.54
10	---	---	15.17	---	---	---	---	16.11	15.17	15.26	14.97	15.14
11	---	---	14.63	---	---	---	---	15.29	15.08	15.09	15.17	15.33
12	---	---	14.04	---	---	13.87	---	15.09	e15.04	14.83	15.13	15.33
13	---	---	14.47	---		14.27	---	15.05	15.25	14.86	14.96	15.41
14	---	---	13.98	---	---	14.45	---	15.17	15.23	15.02	14.84	15.29
15	---	---	13.75	---	---	14.51	---	15.23	15.61	15.22	14.95	15.31
16	---	---	13.55	---	---	---	---	15.30	15.48	15.19	14.87	15.49
17	---	---	14.26	---	---	---	---	15.58	15.13	15.20	14.92	15.99
18	---	---	14.35	---	---	---	---	15.53	14.91	15.07	14.88	15.95
19			14.38			---		15.22	14.85	14.91	14.99	15.99
20	---	---		---		---	---	15.04	14.84	15.02	15.02	15.82
21	---	---	---	---	---	e14.94	---	15.01	14.84	14.97	14.92	15.78
22	---	---	---	---	---	14.63	---	14.98	14.87	15.14	15.11	15.55
23	---	---	---	---	---	14.49	---	15.19	14.87	15.27	15.13	15.28
24		---	---	---	---	e14.73	---	15.26	15.10	15.11	15.19	14.70
25		---	---			14.82	---	15.35	15.10	15.09	14.98	14.38
26	---	---	---	---		14.89	---	15.49	14.91	14.98	15.23	e15.74
27		14.61	---	---	---	15.11	---	15.66	15.01	15.06	15.41	16.16
28	---	14.95	---	---	---	15.30	---	15.49	15.05	15.12	15.31	16.02
29	---	15.25	---	---	---	e15.28	---	15.38	14.79	15.05	15.38	16.29
30		15.50	---	---	---	---	---	15.15	15.16	15.06	15.21	17.34
31	---		---	---	---	---	---	15.12		15.11	15.32	
MEAN	---	---	---	---	---	---	---	---	15.08	15.02	15.06	15.63
MAX	---	---	---	---	---	---	---	---	15.61	15.27	15.41	17.69
MIN	---	---	---	---	---	---	---	---	14.76	14.57	14.75	14.38

e Estimated
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.8	21.2	16.4	12.3	--	---	---	--	25.8	28.5	28.2	29.0
2	26.5	21.6	16.4	12.0	---	---	---	---	25.8	28.3	27.6	27.6
3	26.0	20.6	16.6	12.3	---	15.8	---	---	26.1	28.5	27.6	27.1
4	26.1	19.6	17.2	12.6	---	15.5	---	---	26.9	28.6	27.4	26.8
5	26.1	19.0	16.5	13.1	---	15.3	---	---	27.4	28.6	27.3	27.3
6	26.1	18.8	15.9	13.3	---	---	---	---	27.4	29.0	27.7	27.6
7	26.0	18.6	15.2	---	---	---	---	---	27.0	29.0	27.6	27.2
8	26.0	17.6	14.6	--	---	---	---	23.3	26.6	29.3	28.1	27.5
9	26.0	17.0	15.0	14.5	---	---	---	23.5	26.7	29.3	28.2	27.5
10	25.7	16.8	15.7	14.2	---	---	---	23.9	27.4	28.8	28.7	26.1
11	25.3	16.7	15.9	---	---	---	---	23.5	27.7	28.9	29.3	25.7
12	25.2	16.9	14.8	---	---	14.4	---	23.8	---	29.1	29.3	25.5
13	25.1	17.6	13.9	---	---	14.1	---	24.0	27.9	29.0	29.0	26.1
14	25.3	18.2	13.5	---	---	14.1	---	24.4	27.7	28.6	28.8	26.2
15	25.4	17.7	13.2	---	---	14.4	---	24.7	28.0	28.2	29.1	26.2
16	24.9	17.0	13.1	---	---	---	---	24.6	28.0	27.7	29.0	26.4
17	23.9	16.3	13.4	---	---	---	---	24.8	28.2	27.7	28.6	26.5
18	23.2	15.8	13.5	---	---	---	---	25.0	28.5	27.9	28.6	26.4
19	22.6	16.0	13.4	---	---	---	---	25.0	28.7	28.1	28.0	26.6
20	22.6	16.1	13.2	---	---	---	---	24.9	28.6	28.1	28.0	26.7
21	22.8	16.3	12.9	---	---	15.3	---	25.1	28.6	27.9	27.8	26.6
22	23.0	16.2	13.1	---	---	14.7	---	25.3	28.7	27.9	27.8	26.6
23	23.1	15.8	13.3	---	---	14.9	---	25.6	28.7	28.6	28.2	26.7
24	22.6	14.8	13.7	---	---	---	---	25.8	28.4	29.0	28.5	26.0
25	22.0	14.3	14.2	---	---	15.8	---	26.1	28.0	29.3	28.6	25.7
26	22.9	14.6	14.0	---	---	16.4	---	26.4	27.6	29.0	28.9	---
27	22.8	14.9	14.1	-	---	17.0	---	25.9	28.1	29.1	29.2	---
28	20.9	15.5	13.4	---	---	17.5	---	25.4	28.2	29.0	29.4	26.7
29	20.2	16.2	12.9	---	---	18.0	---	25.6	28.6	28.4	29.4	27.3
30	20.2	16.8	12.8	---	---	---	--	25.6	28.9	28.3	29.7	27.0
31	20.3		12.8	---	--	---	---	25.4		28.1	29.9	---
MEAN	24.1	17.1	14.3	---	---	---	---	---	---	28.6	28.5	---
MAX	26.8	21.6	17.2	---	---	---	---	---	---	29.3	29.9	--
MIN	20.2	14.3	12.8	-	---	---	---	---	---	27.7	27.3	-

291652083064100 EAST PASS SUWANNEE RIVER AT MOUTH NEAR SUWANNEE, FL--Continued.
SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.3	5.4	1.2	. 05	. 15	---	---	---	--	---	---	2.8
2	5.6	4.9	. 10	. 04	. 69	---	---	---	---	---	---	4.8
3	4.3	. 68	. 16	. 04	. 08	. 03	---	---	--	---	---	19.3
4	6.0	. 19	1.2	. 05	. 04	. 03	---	---	--	--	---	5.7
5	4.3	. 28	. 08	. 04	. 04	. 03	---	--	--	--	---	5.4
6	3.6	. 51	. 08	. 04	. 04	---	---	---	---	---	4.4	5.4
7	3.3	1.5	. 08	---	. 04	---	---	--	--	--	5.4	5.3
8	5.3	. 08	. 29	---	. 04	---	---	--	--	--	5.1	5.7
9	5.8	. 71	. 10	. 12	. 04	---	---	--	--	--	4.6	6.0
10	5.2	1.8	. 11	. 04	---	- - -	- -	---	---	--	5.4	2.7
11	5.5	2.2	. 12	. 04	---	---	---	---	--	---	4.6	2.4
12	8.1	4.6	. 10	---	---	. 04	---	---	--	--	3.1	2.6
13	8.9	3.8	. 07	---	---	. 04	---	---	---	--	1.4	5.0
14	9.7	1.6	. 25	---	---	. 04	---	---	---	--	. 75	4.9
15	10.0	. 33	. 06	- - -	--	. 04	-	---	-	--	1.9	4.2
16	7.5	. 11	. 06	. 08	---	---	---	---	--	---	. 87	5.6
17	8.2	. 08	. 06	---	---	---	---	---	--	---	. 89	10.1
18	8.5	. 25	. 07	---	---	---	---	---	---	---	2.0	10.5
19	6.4	. 49	. 06	. 06	---	---	---	---	---	---	2.9	8.8
20	5.5	. 87	. 06	. 06	---	---	---	-- -	--	--	3.2	6.6
21	7.4	1.0	. 15	. 05	---	. 03	---	--	--	---	3.2	3.9
22	7.9	. 25	. 17	---	---	. 03	---	--	--	---	4.4	1.8
23	7.5	. 22	. 19	---	---	. 03	---	---	--	---	5.1	2.2
24	13.5	. 06	. 50	---	---	---	---	---	---	---	6.1	1.1
25	8.3	. 06	. 66	. 05	---	. 03	---	---	---	---	4.5	. 31
26	12.2	. 52	. 39	---	---	. 03	---	--	--	--	6.7	---
27	6.8	. 81	. 25	---	---	. 03	---	---	--	---	5.0	---
28	1.3	2.5	. 05	. 05	---	. 03	---	---	--	---	2.7	7.4
29	4.5	2.7	. 05	. 05	---	. 03	---	---	---	---	2.9	11.3
30	6.1	1.7	. 05	. 12	---	---	---	---	---	---	3.2	16.3
31	8.2	-- -	. 05	.17	---	---	---	---	---	---	4.9	---
MEAN	6.8	1.3	. 22	---	---	---	---	---	---	---	---	---
MAX	13.5	5.4	1.2	---	---	---	---	---	---	---	---	---
MIN	1.3	. 06	. 05	---	---	---	---	--	---	---	---	---

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15.84	---	14.53	14.60	15.37	14.90	15.38	14.23	15.13	15.13	15.99	16.12
2	15.25	---	14.51	15.65	15.40	15.07	14.92	14.56	15.15	14.86	15.96	15.98
3	15.37	---	e14.82	15.00	15.23	15.64	14.87	14.95	---	14.83	15.89	16.08
4	15.35	---	14.90	14.02	15.11	14.21	15.02	15.33	---	14.95	15.75	16.26
5	15.36	---	14.85	13.61	14.69	14.69	14.91	15.86	---	15.02	16.07	16.52
6	15.38	-	e14.91	14.02	14.74	15.06	14.89	15.81	---	15.02	16.34	16.73
7	15.59	---	15.14	14.58	15.17	14.58	14.99	15.73	---	15.15	16.39	16.47
8	15.50	---	15.02	14.94	15.23	14.04	15.00	15.45	---	15.25	16.21	16.37
9	15.40	---	14.64	15.11	15.09	15.59	15.44	15.19	---	15.27	16.25	---
10	15.10	---	14.38	13.83	14.86	15.07	15.38	15.13	---	15.11	16.37	---
11	15.16	---	14.27	13.74	14.87	14.62	15.25	15.12	---	15.15	16.37	---
12	14.91	14.97	14.79	e14.45	14.93	14.55	14.82	15.08	---	15.35	15.94	---
13	e14.96	14.78	15.34	15.00	13.71	15.10	14.43	15.29	---	15.52	15.87	---
14	15.26	15.24	14.11	15.14	13.66	16.21	15.20	15.64	---	15.60	16.14	---
15	15.20	15.24	13.99	14.92	14.34	14.56	16.56	14.98	---	15.70	16.25	---
16	14.68	15.27	14.17	14.64	15.04	14.20	15.13	14.99	---	15.70	16.13	15.26
17	14.80	15.06	14.50	14.94	15.56	14.68	e14.93	14.93	---	15.67	15.84	15.16
18	15.25	14.87	14.38	15.12	15.78	14.89	14.31	15.12	---	15.74	16.12	15.54
19	15.32	14.82	15.13	14.81	15.57	15.01	14.53	15.32	---	15.59	16.18	16.33
20	15.16	14.89	14.89	14.84	e14.76	15.06	14.77	15.22	---	e15.57	16.31	16.51
21	15.07	14.74	14.94	15.02	14.76	15.37	14.81	15.05	---	15.42	16.12	15.79
22	14.34	14.34	15.00	15.49	13.90	14.69	e15.20	15.05	---	15.42	16.11	15.00
23	13.69	14.78	14.80	15.76	14.81	14.81	14.92	15.05	-	15.62	16.18	15.04
24	14.23	14.69	15.01	14.83	14.84	14.77	14.76	15.29	14.86	15.95	16.22	15.39
25	14.65	14.84	14.72	14.05	14.83	15.02	14.69	15.09	14.89	15.91	16.14	15.64
26	14.97	14.61	e14.58	14.34	14.87	14.73	14.98	15.05	14.96	15.74	16.08	15.74
27	---	14.44	14.41	14.67	14.99	e14.19	15.50	14.97	15.22	15.80	16.10	15.71
28	---	14.46	14.87	14.94	15.62	14.48	15.44	14.90	15.16	15.92	16.09	15.50
29	---	14.68	15.41	14.98	---	14.64	15.22	14.85	15.30	16.06	16.20	15.66
30	---	14.86	14.51	14.94	---	14.71	14.64	14.83	15.25	15.99	16.27	15.40
31	---	---	14.62	14.71	---	e15.22	-	15.05	---	16.07	15.88	---
MEAN	---	-	14.71	14.73	14.92	14.85	15.03	15.13	-	15.49	16.12	---
MAX	---	---	15.41	15.76	15.78	16.21	16.56	15.86	---	16.07	16.39	---
MIN	---	---	13.99	13.61	13.66	14.04	14.31	14.23	--	14.83	15.75	--

e Estimated
TEMPERATURE, WATER TOP (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	-- -	---	-- -	---	---	---	---	---	27.3	31.3	29.5
2	---	---	-	-	-	---	---	---	---	27.3	31.1	29.4
3	---	---	---	---	---	---	---	---	--	27.3	29.9	29.6
4	---	---	---	--	---	---	---	---	--	27.5	29.8	29.7
5	---	---	---	---	---	---	---	-	--	28.2	30.1	29.6
6	---	---	---	--	---	---	---	---	--	28.7	30.3	29.3
7	---	---	---	--	--	---	---	-	--	29.1	29.7	29.1
8	---	---	---	---	---	---	---	---	--	29.5	28.9	28.8
9	---	---	---	--	---	---	---	--	--	29.6	28.1	29.1
10	---	---	-- -	- - -	-- -	-- -	-- -	- -	- -	29.1	28.2	28.9
11	---	---	-	--	---	---	---	--	--	29.4	28.5	-
12	---	---	---	- -	--	---	-	---	--	29.4	29.0	-
13	---	---	---	--	---	---	---	--	---	29.4	30.1	---
14	---	---	---	---	---	---	---	---	--	29.5	30.5	--
15	---	---	---	--	---	---	---	-	--	29.3	29.1	- -
16	---	---	---	-	---	---	---	---	-	---	29.2	27.5
17	---	---	---	---	---	---	---	--	---	---	29.6	27.8
18	---	---	---	---	---	---	---	---	---	---	29.9	27.6
19	---	---	---	---	---	---	---	---	---	---	29.9	27.2
20	---	---	---	---	--	-- -	---	-	--	---	29.2	26.9
21	---	---	---	---	---	---	---	---	---	30.9	28.6	26.6
22	---	---	---	---	---	---	---	---	---	30.7	29.2	25.6
23	---	---	---	---	---	---	---	---	---	30.3	29.1	24.7
24	---	---	-- -	---	--	---	-	-- -	28.2	30.3	29.3	24.8
25	---	---	---	---	-	---	---	---	28.2	30.1	29.7	25.3
26	---	---	---	---	---	---	---	---	28.3	30.3	30.1	25.7
27	---	---	---	---	---	---	---	---	28.3	30.6	30.5	25.9
28	---	---	---	--	---	---	---	-- -	27.7	30.7	30.6	26.8
29	---	---	---	---	---	---	---	---	27.2	30.5	30.6	27.5
30	---	---	---	-	---	---	---	-	27.2	30.6	30.7	27.7
31	---	---	---	---	---	---	---	---	---	31.0	30.1	---
MEAN	---	---	---	---	---	---	---	---	---	---	29.7	---
MAX	---	---	---	---	---	---	---	---	---	---	31.3	---
MIN	---	---	---	---	---	---	---	---	---	---	28.1	---

291652083064100 EAST PASS SUWANNEE RIVER AT MOUTH NEAR SUWANNEE，FL－－Continued．
TEMPERATURE，WATER MIDDLE（DEG．C），WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.3	－－－	20.8	16.6	19.5	18.3	22.0	22.1	26.9	－－－	31.3	29.5
2	26.3		20.9	16.8	19.9	18.7	23.1	21.9	27.3	－－－	31.1	29.6
3	26.5	－－－		17.5	20.1	18.7	24.0	22.5	－－－	－－－	29.8	29.9
4	26.6	－－－	21.7	16.6	20.3	18.0	24.3	23.0	－－－	－－－	29.8	29.9
5	26.7	－－－	22.2	15.5	19.9	17.7	24.8	23.3	－－－	－－－	30.1	29.7
6	26.7	20.7	－－－	14.7	19.6	18.2	25.2	24.2	－－－	－－－	30.3	29.3
7	27.0	20.4	22.5	14.5	19.6	19.1	25.6	24.3	－－－	－－－	29.6	29.1
8	27.0	20.4	22.3	15.0	19.7	18.8	25.9	24.5	－－－	－－－	28.8	28.8
9	26.4	20.5	22.3	15.1	19.9	17.3	25.4	25.2	－－－	－－－	28.0	29.1
10	25.7	20.6	22.2	15.6	20.1	18.8	25.3	25.7	－－－	－－－	28.1	28.9
11	25.2	21.2	21.6	15.2	20.4	18.9	25.4	25.8	－－－	－－－	28.4	
12	25.0	21.6	21.5	－－－	20.6	19.1	25.2	25.8	－－－	－－－	28.9	－－－
13	－－－	22.3	21.5	15.1	19.4	18.6	24.3	26.0	－－－	－－－	30.0	－－－
14	25.0	22.4	20.5	15.7	18.1	18.9	23.9	26.2	－－－	－－－	30.5	－－－
15	24.6	22.4	19.3	16.9	17.2	18.3	24.1	26.0	－－－	－－－	29.0	－－－
16	24.1	22.4	18.4	17.1	17.0	18.1	23.7	25.8	－－－	－－－	29.2	27.7
17	23.8	22.6	17.8	17.8	17.4	18.2	－－－	25.9	－－－	－－－	29.6	28.2
18	23.8	22.7	17.0	18.4	18.3	18.9	21.4	26.1	－－－	－－－	30.0	27.9
19	23.9	23.1	16.6	18.6	18.9	19.6	21.2	26.9	－－－	－－－	29.9	27.1
20	23.9	23.3	17.6	18.7	－－－	20.3	21.6	27.2	－－－		29.2	26.9
21	24.1	23.1	18.4	19.4	17.8	20.4	22.5	26.8	－－－	31.2	28.6	26.7
22	23.4	22.0	19.4	19.7	17.5	20.4	－－－	26.9	－－－	30.9	29.2	25.6
23	22.0	22.0	20.4	20.2	16.5	20.6	23.6	27.1	－－－	30.5	29.1	24.7
24	21.6	22.5	21.0	19.8	16.9	21.0	24.4	26.9	－－－	30.3	29.3	24.7
25	21.6	22.8	21.0	19.5	16.6	21.2	25.2	27.0	－－－	30.1	29.7	25.3
26	21.7	22.7	－－－	19.1	17.1	21.1	25.5	27.2	－－－	30.3	30.1	25.7
27	－－－	22.4	18.6	18.9	17.7	20.6	26.1	27.3	－－－	30.6	30.5	26.0
28	－－－	21.6	17.9	19.0	18.3	－－－	26.3	27.8	－－－	30.8	30.5	26.8
29	－－－	21.2	17.7	19.2	－－－	20.8	25.9	28.0	－－－	30.5	30.6	27.6
30	－－－	21.0	17.3	19.6	－－－	21.3	24.4	27.3	－－－	30.6	30.7	27.9
31	－－－	－－－	16.5	19.7	－－－	－－－	－－－	26.9	－－－	31.0	30.0	－－－
MEAN	－－－	－－－	－－－	－－－	－－－	－－－	－－－	25.7	－－－	－－－	29.7	－－－
MAX	－－－	－－－	－－－	－－－	－－－	－－－	－－－	28.0	－－－	－－－	31.3	－－－
MIN	－－	－－	－－－	－	－－－	－－－	－－－	21.9	－－－	－－－	28.0	－－－

TEMPERATURE，WATER BOTTOM（DEG．C），WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

	${ }_{\bullet}^{\omega}{ }_{\sim}^{W}$	NNONNNTN	べらが号		ちゃゅいの	$\cdots ゅ \omega N \vdash$	－易
：	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 	1 1 1 \vdots 1 1 1	$\begin{array}{lllll}1 & 1 & 1 \\ 1 & 1 & 1 \\ & & \\ \end{array}$	：
$\begin{array}{ll} 1 & 1 \\ \vdots \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	－ 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 	－${ }_{6}$
＇	1 1 1 1 1 1 	1	$\begin{array}{llllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 \prime			易
$\begin{array}{l:l} 1 \\ : & 1 \end{array}$	1 1 1 1 1 1 1 1	－	1 1 1 1 1 1 1 1 	＋	（1）	1 1 1 1 1 1 1 1	容
$\begin{array}{l:l} 1 & 1 \\ & 1 \end{array}$	$\begin{array}{l:l} 1 & \vdots \\ & 1 \end{array}$	'	1 \vdots 1 1 	¢	1 1	1 1 1 1 1 1 1	䦩
$\begin{array}{l:l} 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & \vdots \\ 1 & 1 & 1 & \vdots \\ \end{array}$	1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ & & & \\ \end{array}$	1 1 1 \prime 1 1 \vdots	暘
	$\begin{array}{llll\|l} 1 & 1 & 1 & 1 \\ & 1 & 1 \end{array}$	1 1 1	1 1 1 1	1	＋1	$\begin{array}{llllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ & & & & \\ \end{array}$	芴
	$\begin{array}{llllll} 1 & 1 & 1 & 1 \\ & 1 & 1 \end{array}$		$\begin{array}{llll} 1 & 1 & \vdots & \vdots \\ & 1 & 1 \end{array}$	$\begin{array}{l:l} 1 & \vdots \\ \vdots & \vdots \end{array}$	1	$\begin{array}{llllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}$	急
$\begin{array}{l:l} \vdots & \vdots \\ \vdots \end{array}$	NNNN N in ivio ir		$\begin{array}{llll} 1 & 1 & 1 \\ & 1 & 1 \end{array}$	$\begin{array}{ll} 1 \\ \end{array}$		$\begin{array}{l:l} 1 \\ & 1 \end{array}$	： 4
$\begin{array}{llll} 1 & 1 & 1 \end{array}$	$\stackrel{\omega}{\omega}{ }_{0}^{\omega}{ }_{0}^{\omega} \omega_{0}^{\omega}{ }^{\omega}{ }_{0}^{\omega}$ 	$\omega{ }^{\omega} \omega{ }^{\omega}{ }^{\omega}$ ivioin	1 1 1 \vdots 1 1 1 1	NNNN N is oni in ir	NNNNN iv vivio	$\mathrm{NONON}_{\mathrm{N}}^{\mathrm{N}}$ i $\dot{\cos } \mathrm{i}$ is	$\stackrel{N}{N}$
	$\omega_{0}^{\omega} \omega_{0}^{\omega} \omega_{0}^{\omega} \omega_{0}^{\omega}$ • うのウ்へ	NNNN NoN ∞ ir is ir io	Nown No 	 ¡のウ○ir	NNNNNW 	is i is N is	$\stackrel{\omega}{\sim} \stackrel{\Delta}{4}$
	NNNNN － $\mathfrak{j}^{\circ \circ} 0^{\circ}$	NNNNN －∞ jう	NNNN N －ijoin	1 1 1 \vdots 1 1 1 1	$\begin{array}{llll}N & N & N \\ 0 & N & N \\ 0 & 0 & 0\end{array}$ －í í i	Now on No b゙ivó	\％

SALINITY TOP (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	4.3	6.0	4.1
2	---	---	---	---	---	---	---	---	---	4.7	5.5	3.0
3	---	---	---	---	---	---	---	---	---	4.7	3.1	4.9
4	---	---	---	---	---	---	---	---	---	6.0	4.4	6.9
5	---	---	---	---	---	---	---	---	---	6.3	7.2	8.0
6	---	---	---	---	---	---	---	---	---	8.6	6.1	8.1
7	---	---	---	---	---	---	---	---	---	9.0	5.9	5.3
8	---	---	---	---	---	---	---	---	---	8.3	3.9	4.4
9	---	---	---	---	---	---	---	---	---	6.7	3.3	5.2
10	---	---	---	---	---	---	---	---	---	5.5	4.5	5.4
11	---	---	---	---	---	---	---	---	---	9.1	4.5	---
12	---	---	---	---	---	---	---	---	---	9.2	3.9	---
13	--	---	---	---	---	---	---	---		8.1	4.5	---
14	---	---	---	---	---	---	---	---	---	6.4	4.9	---
15	---	---	---	---	---	---	---	---	---	5.2	3.7	---
16	---	---	---	---	---	---	---	---	---	4.4	3.0	7.0
17	---	---	---	---	---	---	---	---	---	4.0	2.0	7.1
18	---	---	---	---	---	---	---	---	---	5.2	3.3	9.5
19	---	---	---	---	---	---	---	---	---	2.9	2.9	12.8
20	---	---	---	---	---	---	---	---	---	---	2.3	10.5
21	---	---	---	---	---	---	---	---	---	8.2	2.1	8.2
22	---	---	---	---	---	---	---	---	---	6.9	2.8	4.8
23	---	---	---	---	---	---	---	---	---	6.4	3.9	5.6
24	---	---	---	---	---	---	---	---	6.2	6.2	4.9	7.9
25	---	---	---	---	---	---	---	---	7.8	4.8	5.6	8.5
26	---	---	---	---	---	---	---	---	9.3	4.7	5.8	7.4
27	---	---	---	---	---	---	---	---	9.7	7.1	6.1	5.9
28	---	---	---	---	---	---	---	---	7.3	6.6	6.0	5.0
29	---	---	---	---	---	---	---	---	6.0	6.8	6.5	5.5
30	---	---	---	---	---	---	---	---	4.6	6.5	5.9	4.4
31	---	---	---	---	---	---	---	---	---	7.5	3.6	---
MEAN	---	---	---	---	---	---	---	---	---	---	4.5	---
MAX	---	---	--	-	--	---	---	---	---	---	7.2	---
MIN	---	---	---	---	---	---	---	---	---	---	2.0	---

SALINITY MIDDLE (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.3	---	4.4	5.5	4.9	1.8	4.7	2.8	6.5	---	7.2	5.8
2	2.4	---	5.0	10.6	6.7	2.0	2.0	5.6	7.6	---	6.9	5.6
3	3.9	---	---	4.4	2.6	2.4	3.7	8.3	---	---	4.1	8.1
4	3.1	---	5.4	. 74	1.2	1.1	3.0	9.2	---	---	6.5	10.5
5	3.6	---	4.7	. 39	1.9	2.1	2.2	10.7	---	---	8.6	10.9
6	2.7	. 26	---	1.3	1.7	1.5	2.5	7.3	---	---	7.6	10.2
7	2.7	. 96	4.7	3.0	1.3	1.2	1.6	7.2	---	---	7.3	6.8
8	1.9	1.8	3.3	4.1	. 30	. 51	2.2	3.3	---	---	4.7	6.0
9	1.5	3.2	1.5	5.2	. 38	5.9	3.7	8.4	---	---	4.1	6.7
10	. 96	1.1	1.5	. 45	. 44	2.7	1.0	10.8	---	---	5.5	6.7
11	. 67	2.9	. 77	. 58	1.1	1.9	2.4	9.5	---	---	5.5	---
12	. 82	. 89	2.8	---	. 93	2.1	1.4	9.8	---	---	4.8	---
13	---	2.5	4.5	4.8	. 13	5.8	3.3	11.5	---	---	5.4	---
14	1.4	4.4	. 40	7.0	. 13	8.1	8.8	13.7	---	---	5.7	---
15	1.3	2.0	. 62	3.9	1.0	1.2	18.7	9.5	---	---	4.6	---
16	. 16	3.5	1.3	4.8	3.7	1.3	5.5	10.9	---	---	3.9	12.3
17	. 32	3.0	2.9	5.1	5.4	2.8	---	8.3	---	---	3.1	14.2
18	1.3	4.5	2.7	4.5	4.3	4.7	4.2	9.9	---	---	4.8	15.0
19	1.8	4.0	5.1	4.2	2.6	5.4	5.6	9.3	---	---	3.9	16.5
20	2.1	3.8	4.3	4.2	---	3.7	5.1	5.0	---	---	3.3	14.8
21	1.9	3.5	5.7	3.4	1.5	3.7	2.6	3.0	---	11.3	3.4	12.9
22	1.0	. 80	5.9	6.5	. 21	1.6	---	3.2	---	10.0	4.3	7.9
23	. 11	1.8	4.7	7.1	2.0	1.2	1.7	6.7	---	9.0	5.2	9.2
24	. 12	2.4	3.9	. 25	1.3	1.5	3.0	6.2	---	7.5	6.5	11.2
25	. 18	3.9	3.0	1.6	2.4	2.2	3.8	4.6	---	5.5	7.2	11.2
26	1.3	2.7	---	1.9	2.0	1.1	8.6	4.2	---	5.4	7.7	10.0
27	---	3.0	3.0	3.2	2.4	1.1	13.5	3.6	---	8.2	8.1	8.1
28	---	2.8	6.0	5.3	2.9	---	11.1	6.0	---	7.7	8.1	6.9
29	---	3.7	8.0	5.0	---	3.6	7.1	6.8	---	7.9	8.9	7.9
30	---	4.9	2.7	4.4	---	4.0	3.8	4.4	---	7.4	8.3	7.0
31	---	---	4.4	3.7	---	---	---	5.5	---	8.7	5.3	---
MEAN	---	---	---	---	---	---	---	7.3	---	---	5.8	---
MAX	---	---	---	---	---	---	---	13.7	--	---	8.9	---
MIN	---	---	---	---	---	---	--	2.8	-	-	3.1	---

291652083064100 EAST PASS SUWANNEE RIVER AT MOUTH NEAR SUWANNEE, FL--Continued.
SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	5.2	7.8	5.8
2	---	---	---	---	---	---	---	---	---	7.3	7.7	6.6
3	---	---	---	---	---	---	---	---	---	7.1	4.9	10.2
4	---	---	---	---	---	---	---	---	---	9.6	7.5	11.8
5	---	---	---	---	---	---	---	---	---	10.7	10.3	11.7
6	---	---	---	---	---	---	---	---	---	13.1	9.1	10.5
7	---	---	---	---	---	---	---	---	---	12.0	7.8	6.7
8	---	---	---	--	--	--	---	---	--	10.3	5.1	6.2
9	---	---	---	---	---	---	---	---	---	8.4	4.4	6.5
10	---	---	---	---	---	---	---	---	---	7.9	5.9	6.6
11	---	---	---	---	---	---	---	---	---	11.5	5.5	---
12	---	---	---	---	---	---	---	---	---	11.0	4.9	---
13	--	---	---	---	---	---	---	---	---	9.5	5.7	---
14	---	---	---	---	---	---	---	---	---	7.8	6.1	---
15	---	---	---	---	---	---	---	---	---	6.5	4.9	---
16	---	---	---	---	---	---	---	---	---	5.6	4.2	12.1
17	---	---	---	---	---	---	---	---	---	4.9	4.0	15.9
18	---	---	---	---	---	---	---	---	---	6.4	5.5	14.3
19	---	---	---	---	---	---	---		---	5.3	4.7	14.3
20	---	---	---	---	---	---	---	---	---	---	4.2	13.6
21	---	---	---	---	---	---	---	---	---	14.0	4.8	11.9
22	---	---	---	---	---	---	---	---	---	12.9	5.5	7.9
23	---	---	---	---	---	---	---	---	---	12.1	5.4	9.1
24	---	---	---	---	---	---	---	---	10.6	9.1	6.8	9.8
25	---	---	---	---	---	---	---	---	10.8	6.0	7.3	9.7
26	---	---	---	---	---	---	---	---	13.0	6.1	7.6	8.4
27	---	---	---	---	---	---	---	---	11.6	9.3	7.7	6.9
28	--	---	---	---	---	---	---	---	9.3	8.5	7.4	5.9
29	---	---	---	---	---	---	---	---	7.1	8.5	8.1	6.8
30	---	---	---	---	---	---	---	---	5.5	7.9	7.4	6.1
31	---	---	---	---	---	---	---	---	---	9.4	4.8	--
MEAN	---	-	-	---	-	---	---	---	---	---	6.2	---
MAX	---	---	---	--	---	--	---	---	--	--	10.3	---
MIN	--	---	---	---	---	---	---	---	---	---	4.0	---

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 76	1.21	-. 43	. 33	-. 31	. 35	. 09	. 49	. 53	. 80	1.03	1.34
2	1.03	. 92	. 10	. 17	-. 49	. 39	. 51	. 74	. 69	. 65	. 93	1.26
3	1.09	-. 85	. 64	. 33	-. 13	. 50	1.04	. 67	. 80	. 55	. 87	1.25
4	1.00	-. 28	. 62	. 52	. 10	. 84	. 86	. 74	. 75	. 75	. 71	1.14
5	. 93	-. 32	1.05	-. 62	-. 62	. 12	-. 53	. 75	. 99	. 77	. 64	1.09
6	. 70	-. 16	. 79	-. 24	-. 45	. 20	. 29	. 67	. 76	. 81	. 82	. 94
7	. 36	. 09	. 04	-. 15	-. 23	. 19	. 49	. 55	. 29	. 88	. 82	. 89
8	. 82	. 48	. 15	. 08	-. 03	. 50	. 87	. 64	. 34	. 66	. 58	. 57
9	1.06	. 70	. 30	. 44	-. 20	. 69	-. 84	. 77	. 40	. 65	. 55	. 54
10	1.08	. 73	. 52	. 73	. 06	. 75	. 23	. 92	. 47	. 81	. 78	. 78
11	. 92	. 60	. 36	. 21	. 52	1.07	. 46	. 63	. 43	. 70	1.02	. 78
12	. 83	. 04	. 63	-. 01	. 49	. 08	. 40	. 56	. 66	. 76	1.06	. 84
13	. 95	. 09	1.08	. 26	. 54	-. 35	. 28	. 62	. 54	. 70	. 97	. 91
14	. 68	. 48	. 35	-1.58	1.10	-. 08	. 11	. 53	. 74	1.03	. 91	1.13
15	. 06	. 44	. 16	-. 97	. 17	. 30	. 43	. 20	. 97	1.23	. 66	1.26
16	-. 33	. 39	-. 61	-. 05	. 06	. 77	. 52	. 10	. 97	1.43	. 64	1.53
17	. 50	. 14	-. 52	. 26	. 16	. 47	. 65	. 52	. 88	1.34	. 89	. 39
18	. 51	. 32	. 26	. 41	. 25	-. 09	. 71	. 81	. 90	. 86	. 95	1.11
19	. 62	. 62	. 63	. 42	. 37	. 27	. 38	. 75	. 78	. 84	. 85	. 78
20	. 72	. 87	. 20	. 60	-. 11	. 53	. 61	. 78	. 70	1.01	. 80	. 92
21	. 22	. 76	. 43	-. 44	-. 47	. 12	1.09	. 88	. 51	. 95	. 63	1.08
22	. 46	. 52	. 03	. 40	-. 59	-. 02	e. 46	1.04	. 55	1.18	. 37	. 91
23	. 66	. 48	-. 37	. 80	-. 17	-. 20	. 62	. 91	. 73	1.01	. 44	. 72
24	. 08	. 51	-. 46	. 43	. 10	. 05	1.51	. 95	. 79	1.08	. 59	. 69
25	. 16	. 78	-. 82	-. 41	. 25	. 59	1.11	. 90	. 74	. 94	. 76	. 85
26	. 44	. 94	-. 24	-. 70	. 40	. 76	. 35	. 73	. 71	. 74	. 83	. 82
27	. 57	. 20	. 03	-. 65	. 54	1.61	e. 47	. 56	. 70	. 70	1.01	. 22
28	. 40	. 11	. 33	-. 70	. 04	. 92	1.21	. 68	. 96	. 73	. 98	. 14
29	. 26	. 32	-. 02	. 06	. 21	. 84	. 60	. 70	1.15	. 88	1.00	-. 03
30	. 71	-. 81	. 27	-. 01	---	1.13	. 22	. 20	1.19	. 98	. 89	. 02
31	. 65	---	. 50	-. 41	---	. 33	---	. 27	---	1.14	1.04	---
MEAN	. 61	. 34	. 19	-. 02	. 05	. 44	. 51	. 65	. 72	. 89	. 81	. 83
MAX	1.09	1.21	1.08	. 80	1.10	1.61	1.51	1.04	1.19	1.43	1.06	1.53
MIN	-. 33	-. 85	-. 82	-1.58	-. 62	-. 35	-. 84	. 10	. 29	. 55	. 37	-. 03
WTR	000	N . 50	X 1.61	MIN -1.								

e Estimated
TEMPERATURE, WATER TOP (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.5	22.7	17.8	15.8		20.4	23.1	22.9	27.4	27.6	29.4	29.0
2	26.1	22.4	16.4	16.4	---	20.7	23.3	23.4	28.1	28.0	29.6	28.1
3	26.2	---	15.6	17.1	---	20.9	23.6	23.9	28.8	28.0	29.5	27.5
4	26.1	19.8	16.2	17.8		21.1	23.2	24.0	29.2	28.2	29.3	27.7
5	25.7	---	17.0	---	---	20.9	---	24.3	28.8	29.2	30.0	27.6
6	25.3	---	---	---	---	20.8	21.0	24.7	28.4	29.7	30.6	27.1
7	24.5	---	---	---	---	21.0	21.5	25.3	28.8	30.3	30.2	27.2
8	24.6	19.9	---	---	---	21.3	21.7	25.5	28.1	29.8	30.4	27.6
9	24.9	20.2	17.5	17.8	---	22.0	---	26.1	28.0	29.8	30.7	27.5
10	25.5	20.6	18.2	18.1	15.9	22.5	---	26.5	27.8	29.9	30.0	27.5
11	26.1	21.1	19.1	18.8	16.3	22.7	20.7	26.8	27.6	30.4	30.1	27.6
12	26.4	21.2	19.1	---	16.8	22.4	21.1	27.2	27.8	30.6	29.2	27.7
13	26.7	21.2	19.0	19.2	17.4	---	21.9	27.5	28.4	30.0	---	28.1
14	26.6	21.6	19.4	---	17.5	---	21.5	27.7	28.7	29.1	---	28.5
15	26.1	21.7	19.4	---	17.8	---	21.1	27.4	29.1	28.8	---	28.9
16	---	21.3	---	---	---	21.1	21.9	27.1	29.4	29.3	---	28.2
17	25.1	20.4	17.1	---	---	21.4	22.6	26.8	29.4	29.1	---	26.2
18	25.5	19.4	16.3	---	---	---	22.8	26.5	29.5	29.3	---	24.2
19	25.6	19.3	16.4	---	20.3	21.5	22.7	26.7	29.6	29.9	---	24.9
20	25.4	19.8	---	17.3	---	21.6	23.3	27.1	29.8	30.6	---	26.0
21	24.3	20.2	---	---	---	21.8	23.6	27.3	29.6	29.6	---	26.4
22	23.1	20.3	---	---	---	22.0	23.3	27.0	29.1	28.9	---	26.2
23	22.2	20.2	---	14.7	---	---	23.2	27.4	29.5	28.2	29.3	26.4
24	---	---	---	15.8	19.6	---	22.5	27.6	29.1	27.4	29.7	27.1
25	---	21.3	---		20.2	22.5	23.1	28.0	28.8	27.6	30.1	27.3
26	20.0	21.9	---	---	20.6	22.7	22.8	28.5	28.3	28.3	29.8	27.4
27	20.7	---	---	---	20.5	22.6	22.5	28.9	28.1	29.0	29.9	26.2
28	---	20.7	15.4	---	20.7	22.7	22.3	29.0	28.2	29.5	29.7	25.6
29	21.5	20.6	15.4	13.7	20.3	22.5	22.8	28.8	28.3	29.7	29.2	25.1
30	22.1	---	15.4	14.0	---	22.9	23.1	28.2	27.4	29.8	29.0	24.8
31	22.5	---	15.6		---	23.2	-	27.3		29.1	29.3	
MEAN	---	---	---	---	---	---	---	26.6	28.6	29.2	---	27.0
MAX	---	---	---	---	---	---	---	29.0	29.8	30.6	---	29.0
MIN	--	--	--	-	--	---	---	22.9	27.4	27.4	---	24.2

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	
1	27.0	22.9	17.5	15.9	13.4	20.4	23.2	22.9	27.3	27.5	29.4	29.0
2	26.6	22.3	15.9	16.6	14.3	20.7	23.4	23.3	28.0	27.9	29.6	28.0
3	26.6	20.8	15.3	17.2	14.3	20.9	23.7	23.8	28.7	28.0	29.5	27.5
4	26.4	19.0	16.1	18.0	14.7	21.1	23.3	23.9	29.1	28.1	29.3	27.7
5	25.9	19.0	16.9	17.8	15.2	20.9	22.1	24.2	28.8	29.1	30.1	27.6
6	25.4	19.1	17.6	16.9	14.6	20.8	20.9	24.6	28.3	29.7	30.8	27.2
7	24.6	19.4	16.9	17.3	14.5	21.0	21.5	25.2	28.7	30.3	30.4	27.3
8	24.6	19.8	17.0	17.7	14.8	21.4	21.8	25.4	27.8	29.9	30.9	27.8
9	24.9	20.1	17.6	17.9	15.3	22.0	20.6	25.9	27.7	29.8	31.3	27.8
10	25.5	20.6	18.3	18.3	15.9	22.6	20.2	26.4	27.6	30.1	30.2	27.5
11	26.1	21.1	19.2	19.0	16.3	22.8	20.5	26.7	27.5	30.5	30.2	27.6
12	26.4	21.5	19.2	19.5	16.8	22.3	20.9	27.2	27.7	30.6	29.2	27.7
13	26.7	21.3	19.1	19.5	17.3	21.4	21.7	27.5	28.4	30.1	28.8	28.1
14	26.8	21.7	19.5	18.2	17.5	20.3	21.6	27.6	28.7	29.1	29.0	28.5
15	26.4	21.8	19.6	16.7	17.8	20.3	21.1	27.3	29.1	28.7	29.5	28.9
16	25.7	21.5	18.7	15.6	18.2	21.1	22.0	27.0	29.4	29.2	30.0	28.2
17	25.0	20.5	16.9	15.8	19.1	21.4	22.7	26.7	29.4	29.0	30.2	26.1
18	25.6	19.3	16.1	16.4	19.9	21.8	22.8	26.5	29.5	29.3	30.5	24.2
19	25.8	19.1	16.3	17.1	20.3	21.5	22.6	26.6	29.6	29.9	30.3	24.9
20	25.5	19.7	17.0	17.4	20.6	21.6	23.2	27.0	29.8	30.6	30.1	25.9
21	24.3	20.2	17.3	16.4	19.9	21.8	23.6	27.2	29.8	29.6	29.6	26.5
22	23.1	20.3	17.5	14.5	19.4	22.1	23.2	27.0	29.2	28.8	29.2	26.4
23	22.1	20.1	17.4	14.7	19.1	22.1	23.0	27.4	29.5	28.2	29.4	26.6
24	20.7	20.4	16.7	15.9	19.5	21.8	22.4	27.5	29.1	27.3	29.8	27.2
25	19.5	21.2	16.1	14.5	20.0	22.4	23.0	28.0	28.9	27.5	30.1	27.3
26	19.9	21.9	14.6	14.2	20.4	22.7	22.6	28.5	28.5	28.2	29.8	27.4
27	20.7	21.3	14.8	13.1	20.4	22.6	22.2	28.8	28.1	29.1	29.9	26.3
28	21.0	20.7	15.4	12.8	20.7	22.7	22.1	29.0	28.3	29.4	29.7	25.5
29	21.6	20.8	15.4	13.0	20.1	22.4	22.7	28.7	28.3	29.8	29.2	25.0
30	22.2	19.7	15.3	13.5	---	22.9	23.0	28.1	27.4	29.8	28.9	24.8
31	22.7	---	15.6	13.4	---	23.3	---	27.2	---	29.0	29.2	---1

WTR YR 2000 MEAN 23.4 MAX 31.3 MIN 12.8
TEMPERATURE, WATER BOTTOM (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27.3	23.2	17.2	15.9	13.2	20.3	23.1	23.0	27.3	27.5	29.5	29.1
2	26.9	22.4	15.7	16.6	14.0	20.7	23.4	23.4	28.1	28.0	29.7	28.1
3	26.8	20.7	15.2	17.2	14.2	20.8	23.6	23.9	28.8	28.0	29.6	27.5
4	26.5	18.5	16.0	18.0	14.5	21.0	23.2	24.0	29.2	28.1	29.4	27.7
5	26.1	18.8	17.0	17.6	15.0	20.8	22.0	24.3	28.8	29.1	30.2	27.7
6	25.6	19.0	17.7	16.5	14.4	20.7	20.8	24.7	28.3	29.8	31.0	27.4
7	24.7	19.4	16.9	17.1	14.3	21.0	21.4	25.3	28.7	30.4	30.8	27.4
8	24.7	19.8	16.9	17.6	14.6	21.3	21.7	25.3	27.7	30.1	31.5	27.9
9	25.0	20.2	17.5	17.8	15.1	22.0	20.5	25.8	27.7	29.9	31.6	28.0
10	25.6	20.7	18.2	18.3	15.8	22.6	19.7	26.4	27.7	30.3	30.3	27.7
11	26.2	21.2	19.2	19.0	16.2	22.8	19.6	26.8	27.6	30.8	30.3	27.8
12	26.6	21.7	19.2	19.5	16.7	22.3	20.6	27.3	27.8	30.8	29.3	27.8
13	26.9	21.4	19.1	19.5	17.0	21.0	21.6	27.6	28.5	30.2	28.8	28.1
14	27.1	21.8	19.5	18.1	17.5	20.1	21.6	27.7	28.9	29.2	29.1	28.6
15	26.8	21.9	19.6	16.6	17.6	20.1	21.0	27.4	29.2	28.7	29.5	29.0
16	25.9	21.6	18.7	15.2	18.1	21.1	21.9	27.0	29.5	29.3	30.1	28.3
17	25.0	20.5	16.7	15.6	19.1	21.3	22.7	26.7	29.5	29.0	30.2	26.2
18	25.7	19.3	15.9	16.3	19.8	21.7	22.8	26.5	29.6	29.3	30.6	24.2
19	26.0	19.1	16.2	17.1	20.2	21.4	22.7	26.6	29.6	30.0	30.3	24.9
20	25.7	19.7	16.9	17.4	20.5	21.5	23.3	27.0	29.9	30.7	30.2	26.0
21	24.4	20.2	17.3	16.3	19.8	21.8	23.6	27.3	29.9	29.7	29.7	26.7
22	23.1	20.3	17.5	14.4	19.2	22.0	23.2	27.0	29.3	28.9	29.2	26.7
23	22.2	20.2	17.4	14.7	18.8	22.0	22.9	27.4	29.7	28.2	29.6	27.0
24	20.6	20.4	16.6	15.9	19.3	21.7	22.4	27.5	29.3	27.4	30.0	27.5
25	19.5	21.3	16.0	14.7	19.7	22.3	23.0	28.0	29.0	27.6	30.3	27.5
26	19.9	22.0	14.5	14.0	20.1	22.6	22.4	28.5	28.7	28.3	30.0	27.5
27	20.7	21.4	14.7	12.7	20.3	22.6	22.0	28.9	28.3	29.2	30.0	26.4
28	21.1	20.8	15.3	12.7	20.6	22.3	22.2	29.1	28.5	29.6	29.8	25.5
29	21.7	20.9	15.3	12.4	19.9	22.2	22.7	28.7	28.4	29.9	29.3	25.1
30	22.4	19.9	15.2	13.1	-	22.9	23.0	28.1	27.4	29.9	29.0	24.8
31	22.9	-	15.5	13.4	---	23.3	-	27.2	---	29.1	29.3	---
MEAN	24.5	20.6	16.9	16.2	17.4	21.6	22.2	26.6	28.7	29.3	29.9	27.1
MAX	27.3	23.2	19.6	19.5	20.6	23.3	23.6	29.1	29.9	30.8	31.6	29.1
MIN	19.5	18.5	14.5	12.4	13.2	20.1	19.6	23.0	27.3	27.4	28.8	24.2

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.7	11.3	2.6	4.2	---	6.1	---	6.6	7.9	6.3	8.4	9.4
2	3.8	9.2	6.1	5.1	---	4.8	3.6	6.8	8.1	7.1	7.7	6.6
3	3.3	---	10.1	7.4	---	4.9	6.8	6.5	8.0	6.9	7.0	4.2
4	3.6	4.2	8.7	8.2	---	5.4	6.4	5.8	7.1	8.4	5.0	3.1
5	5.2	---	11.8	---	---	---	---	5.6	8.4	8.8	5.3	2.8
6	4.1	---	7.3	---	---	5.8	3.5	4.7	6.5	9.1	6.0	3.2
7	2.5	---	--	---	---	4.9	3.1	3.5	4.3	9.3	4.1	8.5
8	4.2	---	---	---	---	5.5	4.3	3.6	3.5	3.5	4.6	11.0
9	5.0	10.7	---	8.6	---	5.4	---	3.4	4.1	4.7	7.4	10.5
10	6.5	9.7	7.7	8.2	---	4.7	---	2.5	5.4	4.8	10.8	7.9
11	6.5	9.7	6.0	3.3	6.9	4.6	. 83	1.2	5.1	5.5	9.7	7.3
12	6.0	---	8.0	---	2.7	---	1.7	2.2	6.2	6.6	5.1	7.5
13	6.2	--	9.6	4.1	4.4	---	1.8	3.3	5.3	5.5	---	8.6
14	4.0	9.1	3.5	---	10.7	---	---	2.8	6.3	8.4	---	8.5
15	2.3	8.9	4.1	---	---	---	3.8	4.0	8.1	7.9	---	8.1
16	---	11.7	---	---	---	5.4	5.2	3.3	7.9	9.8	---	8.1
17	3.8	10.5	--	---	---	2.8	4.9	4.8	6.2	8.2	---	1.7
18	7.1	10.2	5.5	---	---	---	4.6	6.4	7.5	5.4	---	6.3
19	8.2	10.6	7.1	---	---	3.5	3.6	5.5	6.0	5.9	---	3.6
20	7.8	11.5	---	6.1	---	6.8	4.9	5.3	5.9	6.6	---	4.0
21	4.1	10.7	---	---	---	5.6	5.4	4.9	4.1	4.4	---	4.6
22	6.3	8.7	---	---	---	---	2.0	4.5	6.2	5.2	---	4.7
23	7.1	---	---	9.5	---	---	3.4	2.9	7.1	2.8	4.4	2.9
24		---	---	---	3.8	---	7.6	2.8	6.0	2.4	7.0	4.6
25	---	10.5	---	---	4.0	4.4	2.6	2.7	5.5	2.2	8.3	6.7
26	-	10.2	---	---	3.7	3.9	2.1	2.0	4.4	3.4	8.2	5.6
27	8.7	---	---	---	2.0	8.5	2.2	2.0	5.5	5.9	10.6	2.7
28	---	---	6.9	---	5.0	1.5	5.5	3.2	8.6	8.1	10.1	1.6
29	---	8.6	4.0	2.9	5.5	1.1	2.1	3.9	10.3	9.5	8.5	2.0
30	8.2	---	4.8	2.8	---	5.0	2.7	4.7	8.4	9.2	8.4	1.1
31	7.6	---	4.7	---	---	1.6	---	6.1	---	8.9	8.5	---
MEAN	---	---	---	---	---	---	---	4.1	6.5	6.5	--	5.6
MAX	---	---	---	---	---	---	---	6.8	10.3	9.8	---	11.0
MIN	---	---	---	---	---	---	---	1.2	3.5	2.2	---	1.1

SALINITY MIDDLE (PARTS PER THOUSAND), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.2	15.4	6.5	9.5	9.5	10.7	4.5	8.8	9.1	7.3	9.7	8.2
2	7.3	10.1	12.2	10.8	9.3	7.3	4.7	7.9	8.9	7.9	8.6	5.9
3	7.0	1.8	14.2	12.0	12.7	6.7	7.5	7.4	8.9	8.0	8.3	4.1
4	8.1	9.7	11.8	11.3	11.0	6.7	7.2	6.4	8.2	9.4	6.3	2.9
5	10.1	9.3	13.8	4.0	5.5	6.5	1.6	6.4	9.7	8.6	7.0	2.8
6	7.7	9.3	9.3	7.2	7.3	7.1	4.1	5.5	8.3	8.4	7.6	4.8
7	4.8	11.6	7.4	9.4	9.5	6.2	3.7	4.2	5.4	6.5	5.9	12.3
8	6.9	12.6	8.6	11.6	10.7	6.4	4.7	4.8	6.8	2.6	9.2	15.2
9	7.7	12.2	9.8	11.0	10.0	6.5	. 58	5.0	7.2	3.3	13.5	13.2
10	9.1	11.4	9.8	10.0	10.2	5.6	2.1	3.3	7.1	3.4	14.8	9.0
11	9.5	12.3	8.4	5.6	8.8	5.6	2.4	2.1	6.7	3.7	12.7	8.5
12	9.0	10.1	11.5	5.1	4.1	1.6	3.8	3.3	7.9	4.5	7.8	7.5
13	8.8	10.2	12.2	8.6	6.2	2.2	4.0	4.7	7.1	4.5	7.1	7.6
14	8.3	14.8	8.5	. 42	14.1	4.3	2.3	4.0	8.0	6.2	7.2	6.9
15	6.5	14.5	9.2	2.8	8.7	5.7	5.1	5.2	9.3	5.1	7.1	7.2
16	4.7	18.9	3.8	7.3	9.3	6.3	5.7	4.7	9.1	6.5	7.3	7.0
17	8.4	18.1	3.5	10.2	8.5	3.5	5.7	6.2	7.6	5.2	8.3	1.6
18	16.4	14.2	9.3	9.8	7.7	5.0	5.4	7.5	9.0	3.5	7.7	5.6
19	15.8	13.1	10.2	9.2	7.0	5.4	4.5	6.6	7.6	3.7	6.7	4.4
20	11.5	13.4	7.5	9.3	5.2	8.2	5.7	6.6	7.7	4.5	6.0	5.1
21	7.1	11.9	8.3	4.2	4.9	7.3	5.7	5.9	7.5	2.7	5.3	5.2
22	9.2	10.4	6.9	10.2	2.9	6.9	2.3	5.2	9.2	3.0	4.8	5.4
23	8.2	10.6	7.0	10.8	3.8	4.9	3.7	3.4	9.7	1.8	6.4	4.4
24	6.3	11.5	7.2	5.3	6.0	4.2	8.6	3.8	8.0	1.5	8.6	5.6
25	8.5	12.0	3.8	2.7	6.9	6.0	4.2	3.8	7.0	1.7	9.0	6.1
26	8.5	11.5	8.7	2.4	7.4	4.8	5.5	3.2	6.5	4.4	9.5	5.4
27	9.4	8.4	10.1	6.5	7.7	9.4	5.2	3.0	6.9	7.6	11.0	3.5
28	8.1	11.5	10.3	4.7	10.6	2.9	7.5	4.5	10.5	9.6	9.8	2.2
29	7.8	14.8	8.5	7.9	12.2	1.9	4.3	6.0	11.8	11.2	8.1	2.9
30	11.3	3.9	9.2	8.6	---	6.3	6.2	6.6	9.2	10.5	7.9	2.2
31	11.8	---	8.9	6.3	---	3.6	---	8.1	---	9.9	7.9	-
MEAN	8.7	11.6	8.9	7.6	8.2	5.7	4.6	5.3	8.2	5.7	8.3	6.1
MAX	16.4	18.9	14.2	12.0	14.1	10.7	8.6	8.8	11.8	11.2	14.8	15.2
MIN	4.7	1.8	3.5	. 42	2.9	1.6	. 58	2.1	5.4	1.5	4.8	1.6

291652083064100 EAST PASS SUWANNEE RIVER AT MOUTH NEAR SUWANNEE, FL--Continued.
SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.2	18.0	9.7	14.1	11.6	13.8	5.6	10.1	9.7	8.0	10.0	9.8
2	7.6	10.8	16.3	15.9	11.7	8.8	5.2	8.5	9.3	8.9	8.8	7.2
3	7.0	2.5	16.3	16.4	13.8	7.6	7.7	7.9	9.2	9.6	8.6	5.2
4	7.7	14.5	14.0	15.7	12.4	7.3	7.5	7.0	8.7	11.4	6.7	3.7
5	9.1	12.4	14.9	8.1	6.9	7.7	1.9	6.9	10.1	10.9	7.4	3.9
6	6.9	11.5	10.9	10.8	8.3	7.6	4.5	6.2	8.8	12.2	8.0	8.7
7	4.6	12.3	9.1	12.0	11.3	6.6	3.9	4.9	6.7	12.0	7.0	17.8
8	6.0	12.7	10.8	13.6	11.8	6.7	5.0	5.9	8.8	6.2	12.3	21.2
9	7.1	12.3	10.5	12.1	11.2	7.0	. 65	6.3	8.6	7.5	15.0	17.7
10	8.4	11.9	10.2	10.7	11.3	5.9	2.7	4.1	8.3	8.2	14.2	13.0
11	8.4	13.0	9.2	6.4	9.2	6.1	5.3	2.8	7.4	9.7	12.2	12.6
12	8.2	12.3	12.0	6.7	4.8	1.9	5.8	4.4	9.2	10.2	7.6	10.7
13	8.1	12.5	12.6	10.6	9.0	3.5	5.5	5.7	8.9	8.9	5.9	10.1
14	8.8	16.0	9.6	. 56	16.4	6.7	2.9	4.8	9.3	11.5	6.1	9.6
15	8.2	17.0	14.1	3.2	12.8	6.8	5.8	5.8	10.0	9.7	5.7	9.0
16	6.6	22.7	8.0	9.3	11.3	6.8	6.0	5.9	10.0	11.2	5.7	8.5
17	10.2	21.7	6.6	12.2	9.3	3.9	6.2	7.2	9.0	9.8	5.8	2.2
18	16.9	16.7	13.6	10.8	8.1	5.8	5.9	7.9	10.7	7.6	5.1	7.5
19	16.3	14.5	16.5	10.2	7.4	6.4	4.9	7.2	8.9	7.4	4.5	6.9
20	11.3	13.5	11.6	9.6	5.7	8.7	6.2	7.2	9.0	8.3	3.9	8.6
21	7.1	12.5	11.5	4.9	6.1	8.0	6.2	6.5	8.8	5.4	3.4	8.0
22	8.8	11.1	9.4	10.5	3.9	8.0	2.6	5.4	11.0	6.2	4.2	10.2
23	7.8	11.2	15.8	11.1	5.0	5.9	4.8	3.8	11.0	4.0	8.0	8.7
24	6.2	12.3	15.5	5.4	7.7	5.2	9.8	4.2	9.3	3.1	11.2	9.4
25	8.2	12.4	7.0	2.9	9.7	7.3	5.5	4.5	8.2	3.0	11.3	8.6
26	8.4	11.5	11.8	3.9	10.9	6.3	9.2	4.2	7.9	5.2	10.9	6.8
27	9.5	9.8	17.4	8.4	12.4	9.7	8.1	3.4	8.3	9.2	12.2	4.5
28	8.5	13.4	19.0	7.1	15.5	6.1	9.1	5.2	12.7	10.9	10.8	2.8
29	9.3	17.5	17.2	10.5	16.0	3.1	6.3	7.1	12.8	11.6	9.4	4.6
30	12.7	7.5	14.7	12.3	---	7.6	8.5	7.8	10.1	11.1	9.3	3.0
31	13.8	-- -	14.1	9.5	---	5.6	---	9.0	---	10.0	9.3	---
MEAN	8.8	13.3	12.6	9.5	10.1	6.7	5.6	6.1	9.4	8.7	8.4	8.7
MAX	16.9	22.7	19.0	16.4	16.4	13.8	9.8	10.1	12.8	12.2	15.0	21.2
MIN	4.6	2.5	6.6	. 56	3.9	1.9	. 65	2.8	6.7	3.0	3.4	2.2

LOCATION.-- Lat. $29^{\circ} 18^{\prime} 41^{\prime \prime}$, long. $83^{\circ} 07^{\prime} 08^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{sec}$. 33 , T. 13S., R. 12E., Dixie County, hydrologic unit 03110205 , on left bank, 0.3 mi downstream of head of East Pass and 3.8 mi . above the mouth of East Pass.

DRAINAGE AREA.--Indeterminate.
PERIOD OF RECORD.-- June 1995 to October 2000.
GAGE.--Water-stage recorder; datum of gage is 2.66 ft . below National Geodetic Vertical Datum (NGVD) of 1929; water-quality measured at two elevations, 2.03 ft . (top) and 13.03 ft . (bottom) below NGVD 1929.

REMARKS.-- Tidally-influenced site--discharge computed using index velocity. Previous to March 1999, gage was located about 20 ft . north of present location and water temperature, salinity were measured at one undetermined elevation. Record is rated as follows: 1995: discharge, gage height, water temperature, salinity -- fair to poor; estimated periods poor; 1996: discharge, gage height, water temperature, salinity -- fair to poor; estimated periods poor; 1997: discharge, gage height, water temperature, salinity -- fair to poor; estimated periods poor; 1998: discharge, gage height -- poor; water temperature, salinity -- fair to poor; estimated periods poor; 1999: discharge, gage height, water temperature, salinity -- previous to March 1999, fair to poor; March to September 1999, fair; estimated periods poor; 2000: discharge, elevation -- good except for estimated periods, which are fair to poor; water temperature, salinity-- good.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995 DAILY MEAN VALUES

[^7]GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995
DAILY MEAN VALUES

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	13.44	13.39	13.93
2	---	---	---	---	---	---	---	---	---	13.52	12.23	13.88
3	---	---	---	---	---	---	---	---	---	13.67	14.58	13.59
4	---	---	---		---	---	---		---	13.47	13.92	13.45
5	---	---	---	---	---	---	---	---	---	13.34	13.86	13.41
6	---	---	---	---	---	---	---	---	---	13.21	13.92	13.61
7	---	---	-	-	-	---	---	---	---	13.33	13.77	14.18
8	---	---	---	---	---	---	---	---	---	13.54	13.81	14.26
9	---	---	---	---	---	---	---	---	---	13.63	13.88	14.20
10	---	---	---	---	---	---	---	---	---	13.94	14.14	14.09
11	---	---	---	---	---	---	---	---	---	13.85	14.22	13.97
12	--	---	---	---	---	---	---	---	---	13.74	14.08	14.03
13	---	---	---	---	---	---	---	---	---	e13.76	14.09	14.00
14	---	---	---	---	---	---	---	---	---	13.78	13.80	14.04
15	---	---	---	---	---	---	---	---	---	13.72	13.72	13.84
16	---	---	---	---	---	---	---	---	---	13.59	14.03	13.89
17	--	-	---	---	---	---	---	---	---	13.68	14.09	13.92
18	---	---	---	---	---	---	---	---	---	13.66	13.93	13.84
19	---	---	---	---	---	---	---	---	---	13.60	13.71	13.76
20	---	---	---	---	---	---	---	---	---	13.55	13.78	13.73
21	---	---	---	---	---	---	---	---	---	13.52	13.96	13.68
22	---	---	---	---	---	---	---	---	---	13.37	13.91	14.08
23	---	---	---	---	---	---	---	---	13.56	13.40	13.75	14.18
24	---	---	---	---	---	---	---	---	13.91	13.51	13.65	14.02
25	---	---	---	---	---	---	---	---	14.16	13.71	14.58	14.01
26	---	---	---	---	---	---	---	---	13.95	13.81	14.96	14.23
27	---	---	---	---	---	---	---	---	13.65	13.84	14.60	14.17
28	---	---	---	---	---	---	---	---	13.42	14.26	14.28	13.88
29	---	---	---	---	---	---	---	---	13.31	14.00	13.62	13.85
30	---	---	---	---	---	---	---	---	13.30	14.03	13.11	13.52
31	---	---	---	---	---	---	---	---	---	13.75	13.34	--
MEAN	---	---	---	---	---	---	---	---	---	13.65	13.89	13.91
MAX	---	---	---	---	---	---	---	---	---	14.26	14.96	14.26
MIN	---	---	---	---	---	---	---	---	---	13.21	12.23	13.41

Estimated
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	---	---	27.2
2	---	---	---	---	---	---	---	--	--	-	27.6	27.4
3	---	---	---	---	---	---	---	---	---	--	26.5	---
4	---	---	---	--	---	---	--	--	-	-	26.7	--
5	---	---	---	---	---	---	---	---	--	--	27.1	---
6	---	---	-	---	---	---	---	---	--	--	27.8	---
7	--	--	--	--	--	---	-	---	---	---	28.2	26.3
8	---	---	---	---	---	---	---	---	---	--	28.2	26.2
9	--	-	---	-	---	---	--	--	--	-	28.3	26.5
10	---	---	---	--	--	---	--	---	---	-	28.5	26.5
11	---	---	---	---	---	---	---	---	---	---	---	26.6
12	---	-	---	-	---	---	-	---	-	---	-	27.0
13	---	---	---	--	--	---	-	--	---	---	---	27.3
14	---	---	---	---	---	---	---	---	---	---	28.9	27.7
15	---	---	---	---	---	---	--	--	--	-	---	---
16	---	---	---	---	---	---	---	---	---	-	--	--
17	---	---	---	---	---	---	---	---	---	--	---	27.4
18	---	---	-	-	---	-	-	--	-	-	-	27.6
19	---	--	-	--	---	---	-	---	---	-	--	27.8
20	---	---	---	---	--	-	-	---	-	---	---	年
21	---	-	-	-	---	-	--	--	--	-	29.2	27.7
22	---	---	---	--	---	--	--	---	-	-	28.8	27.8
23	---	---	---	---	---	---	---	---	---	---	28.3	27.9
24	---	---	---	---	---	---	---	---	---	---	27.6	27.5
25	---	---	---	---	---	---	---	---	---	---	27.7	26.7
26	---	---	---	-	---	---	--	--	--	-	28.0	26.5
27	---	---	---	---	---	---	---	---	---	---	28.1	26.2
28	---	---	--	--	---	---	--	---	--	-	28.3	26.0
29	---	---	---	---	---	---	---	---	--	---	28.1	---
30	---	---	---	---	---	---	---	---	---	---	27.5	25.8
31	---	---	---	---	---	---	---	---	--	-	27.3	---
MEAN	---	-	---	-	---	-	---	---	---	---	---	---
MAX	---	---	---	---	---	---	---	---	---	---	---	---
MIN	---	---	---	---	---	---	---	---	---	---	---	---

SUWANNEE RIVER BASIN
291841083070800 EAST PASS SUWANNEE RIVER NEAR SUWANNEE, FL--Continued
SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995 DAILY MEAN VALUES

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUg	SEP
1	---	---	---	---	---	---	---	---	---	---	---	. 77
2	---	---	---	---	---	---	--	---	---	---	---	1.1
3	---	---	---	---	---	--	---	--	---	--	---	---
4	--	---	--	---	---	--	---	-	---	-	---	---
5	--	--	-	--	---	---	--	---	---	---	---	---
6	-	--	---	-	---	-	---	--	--	--	---	---
7	--	---	---	---	---	---	-	---	---	---	---	2.5
8	---	---	---	---	---	---	---	---	---	--	---	2.4
9	--	---	---	---	---	---	---	---	---	---	---	1.7
10	---	--	---	---	---	---	---	---	---	---	---	. 96
11	---	---	---	---	---	---	---	---	---	---	---	. 54
12	---	--	--	--	--	--	---	--	--	---	---	. 69
13	---	---	---	---	---	---	---	---	---	--	---	. 27
14	--	--	---	---	---	---	---	---	---	---	. 21	. 61
15	---	---	---	---	---	---	---	---	---	---	---	---
16	---	---	---	---	---	---	---	---	---	---	---	--
17	--	---	--	--	---	--	---	--	---	---	---	. 63
18	---	---	--	--	---	--	---	-	---	---	---	. 22
19	--	---	--	--	---	---	---	---	---	---	---	. 43
20	---	--	---	---	---	---	---	---	---	---	---	---
21	--	---	---	---	---	---	---	---	---	---	1.1	. 48
22	---	---	-	---	---	---	---	--	---	---	1.3	2.0
23	--	---	---	---	---	--	---	--	---	---	1.5	1.8
24	--	---	-	---	---	---	---	---	---	---	. 73	. 86
25	---	--	---	---	---	---	---	---	---	---	3.6	1.3
26	---	---	---	---	---	---	---	---	---	---	4.1	2.0
27	---	--	-	---	---	---	--	---	---	---	. 94	1.4
28	--	-	---	---	---	---	-	---	---	---	. 38	1.2
29	-	--	---	---	---	---	---	---	---	---	. 20	--
30	--	---	---	---	---	---	---	---	---	---	. 17	. 28
31	---	---	---	---	---	--	---	--	--	---	. 16	---
MEAN	---	---	---	---	---	---	---	---	---	---	---	---
MAX MIN	----	----	----	----	----	----	----	----	----	----	---	--

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2290	1040	---	---	1310	1740	4050	3320	1950	---	e3490	2420
2	2320	2750	-	---	1110	1530	4060	2640	e1900	---	2540	2470
3	1160	---	---	---	2540	2110	3480	2480	1710	---	2670	2420
4	-4180	---	---	---	2520	1720	3420	2460	1640	---	2670	2150
5	6200	---	---	1540	1820	1320	3650	2510	1780	---	2310	1710
6	2480	---	---	1470	1620	1490	3510	2490	1690	---	2200	2040
7	2100	---	---	2570	1330	1440	3970	2540	1480	---	2220	1750
8	2070	---	---	2780	1290	2960	3390	2570	1270	---	2280	2160
9	1840	---	---	1090	1400	2230	e4220	2590	1060	---	2440	2160
10	1490	---	---	1570	1490	2480	4680	2770	1580	---	2350	2570
11	1790	---	---	821	1270	2460	4130	2360	1440	---	2530	2530
12	1750	-	---	1590	2480	1600	3330	2900	1600	---	2910	2470
13	1360	---	---	1810	1280	1210	3530	2800	1740	---	2610	2550
14	1150	---	---	736	792	1560	3670	3230	1750	---	2680	2550
15	2110	---	---	1070	1270	1640	4080	2770	1670	---	2730	2220
16	---	---	---	1240	3250	2170	4730	2610	1730	---	2750	2210
17	-	-	---	1350	1530	2160	3890	2430	1740	--	2630	2350
18	---	---	---	1340	1700	2220	3520	2370	1600	---	2790	2530
19	---	---	---	2660	1350	3150	3480	2310	1580	---	2830	2290
20	---	---	---	1830	1750	2880	3500	2170	1520	---	2860	2160
21	---	---	---	1940	1860	3040	3450	2070	1510	---	2580	1650
22	882	---	---	1730	1400	2410	3300	2020	1390	---	2230	2360
23	1480	---	---	1110	1400	2330	2840	1700	e1410	---	2160	2140
24	1770	---	---	1200	1490	2250	3150	1780	--	---	2830	2210
25	1750	---	---	2060	1380	2080	2880	1480	e1010	---	2630	2320
26	1640	---	---	727	1230	2700	2290	1560	---	---	2870	2420
27	1350	---	---	1650	1120	1870	2670	1450	---	---	2680	2420
28	2070	---	---	1720	1050	2560	2490	1890	--	---	2770	2330
29	1970	---	---	800	1880	2590	1910	1660	---	---	2960	2400
30	1190	---	---	1420	---	3190	2960	1940	---	---	2810	2530
31	1040	---	---	1430	-	3520	---	2130	---	3770	2630	
MEAN	---	---	---	---	1583	2213	3474	2323	---	---	2634	2283
MAX	---	---	---	---	3250	3520	4730	3320	---	---	3490	2570
MIN	---	---	---	---	792	1210	1910	1450	---	---	2160	1650

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13.56	13.79	---	---	13.47	12.85	13.63	12.79	13.27	---	e14.22	13.46
2	13.76	---	---	---	14.09	13.23	12.55	13.16	13.38	---	14.10	13.43
3	14.40	---	---	---	13.36	12.61	13.12	13.58	13.61	---	14.02	13.38
4	16.27	---	---		11.96	12.69	13.78	13.75	13.71	---	13.79	13.23
5	15.31	---	---	13.02	11.35	13.45	13.93	13.74	13.55	---	13.69	13.23
6	14.15	---	---	13.17	12.32	13.99	14.16	13.80	13.34	---	13.67	13.40
7	13.82	---	---	13.71	12.70	14.23	13.72	13.70	13.36	---	13.64	13.28
8	13.40	---	---	11.79	13.29	12.25	13.80	13.70	13.60	---	13.63	13.31
9	13.10	---	---	12.33	13.50	11.56	13.67	13.61	14.19	---	13.59	13.51
10	13.67	---	---	12.78	13.41	11.44	12.89	13.36	13.77	---	13.83	13.58
11	13.79	---	---	13.19	13.63	11.15	12.94	13.32	13.79	---	14.01	13.56
12	13.42	---	---	13.43	12.64	12.19	13.43	13.21	13.66	---	14.25	13.53
13	13.66	---	---	12.19	12.38	12.96	13.90	13.00	13.56	---	13.89	13.49
14	14.07	---	---	12.99	13.29	13.05	13.97	12.89	13.43	---	13.74	13.50
15	---	---	---	13.14	13.51	13.36	13.94	13.11	13.52	---	13.76	13.66
16	---	---	---	13.16	13.03	13.75	13.56	13.37	13.58	---	13.62	14.17
17	---	---	---	13.37	12.04	13.88	13.18	13.46	13.46	---	13.62	14.12
18	---	---	---	13.81	13.00	14.31	13.72	13.53	13.50	---	13.61	13.76
19	---	---	---	13.62	13.59	14.43	13.86	13.45	13.59	---	13.28	13.31
20	---	---	---	12.61	13.80	13.20	13.78	13.49	13.60	---	13.31	13.26
21	---	---	---	12.96	13.08	12.70	13.59	13.67	13.45	---	13.15	13.74
22	---	---	---	12.42	13.16	12.83	13.56	13.48	13.36	---	13.46	13.70
23	13.50	---	---	12.97	13.16	13.05	13.67	13.45	e13.20	---	13.52	13.18
24	13.54	---	---	13.79	13.15	13.25	13.21	13.22	e13.02	---	13.48	13.61
25	13.66	---	---	12.30	12.94	13.69	13.32	13.20	e13.03	---	13.37	13.78
26	13.86	---	---	13.44	12.96	13.32	13.64	13.31	---	---	13.28	14.05
27	14.27	---	---	13.33	13.09	13.52	13.28	13.35	---	---	13.41	13.97
28	14.03	---	---	12.02	13.20	13.80	13.17	13.45	--	---	13.47	13.96
29	12.44	---	---	13.18	12.69	13.32	13.80	13.68	e12.67	---	13.25	13.95
30	12.82	---	---	13.24	-	13.27	14.20	13.51	--	---	13.31	13.86
31	13.38	---	---	13.47	---	13.55	---	13.23	---	--	13.34	
MEAN	---	---	---	---	13.03	13.13	13.57	13.41	---	---	13.62	13.60
MAX	---	---	---	---	14.09	14.43	14.20	13.80	--	---	14.25	14.17
MIN	---	---	---	---	11.35	11.15	12.55	12.79	---	---	13.15	13.18

e Estimated

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	25.9	22.5	18.1	14.6	18.2	19.6	18.3	23.6	26.4	---		26.9
2	26.0	---	18.2	16.0	18.2	18.5	18.7	23.6	25.8	28.8	28.0	26.5
3	26.3	---	18.4	16.7	18.4	18.3	19.1	24.0	25.9	28.7	27.2	26.2
4	27.1	---	18.7	16.6	17.5	18.4	19.6	24.4	26.1	28.4	26.8	26.4
5	27.0	---	19.1	16.3	15.7	18.6	20.0	24.9	26.2	28.3	27.1	27.0
6	26.6	---	19.4	16.3	14.8	19.2	19.8	25.3	26.6	27.6	27.5	27.3
7	26.5	---	19.7	15.8	14.6	19.9	19.4	25.6	27.2	27.1	28.0	27.6
8	26.4	---	19.7	15.1	15.1	19.4	18.9	25.8	27.2	27.0	28.2	27.9
9	26.3	---	19.5	14.2	15.7	17.8	18.6	25.7	26.4	26.9	28.3	28.0
10	26.0	---	18.7	13.8	16.1	16.3	18.6	25.6	26.2	26.5	28.7	27.8
11	25.8	---	17.2	13.9	16.8	14.9	18.6	25.7	26.4	27.1	28.5	27.4
12	25.5	---	16.2	14.1	17.1	14.5	18.6	25.7	26.9	27.7	27.4	27.3
13	25.5	---	15.9	13.9	16.9	15.0	18.8	25.5	27.5	28.2	26.9	27.5
14	25.8	---	16.3	14.1	16.5	15.8	19.5	25.4	28.1	28.4	27.0	27.3
15	25.1	---	17.0	14.5	16.9	16.7	19.7	25.2	28.0	28.5	27.1	27.2
16	24.1	---	17.6	14.9	17.0	17.6	19.2	25.3	27.2	28.4	27.3	27.1
17	23.4	---	18.1	15.6	15.8	18.4	19.3	25.6	26.9	28.2	27.5	26.9
18	23.2	---	18.7	16.3	15.4	18.8	19.6	25.8	27.0	28.3	27.5	27.1
19	23.2	---	19.1	16.9	15.4	18.3	20.0	26.2	27.2	---	27.5	27.0
20	23.3	---	18.4	16.8	15.8	17.1	20.8	26.6	27.0	---	27.6	26.7
21	22.8	---	17.5	16.4	17.1	16.3	21.5	26.6	27.3	29.0	27.6	26.5
22	22.3	---	16.4	16.4	17.6	16.1	22.2	26.2	27.8	29.2	27.6	26.1
23	22.1	---	15.7	16.4	18.3	16.5	22.7	26.6	28.1	29.2	27.8	25.9
24	22.5	---	15.1	16.4	19.2	17.0	22.9	27.0	28.6	29.2	27.9	25.8
25	23.0	17.4	14.3	16.2	20.4	17.9	22.7	27.2	29.0	29.2	27.8	25.8
26	23.4	17.4	13.7	16.0	21.1	18.5	22.8	27.3	28.6	29.2	27.5	25.8
27	23.9	17.2	13.6	16.6	21.2	18.4	23.1	27.5	28.3	29.4	27.6	25.9
28	24.3	17.4	13.4	16.5	21.3	18.3	23.6	27.7	---	---	27.7	26.1
29	23.4	18.1	13.3	16.2	21.1	18.4	24.2	27.5	---	---	27.7	26.2
30	22.7	18.3	13.2	16.8	-	18.3	24.3	27.4	-	29.2	27.4	26.0
31	22.3	---	13.6	17.5	---	18.1	---	27.2	---	---	27.1	
MEAN	24.6	---	16.9	15.7	17.4	17.6	20.5	25.9	---	---	---	26.8
MAX	27.1	---	19.7	17.5	21.3	19.9	24.3	27.7	---	---	---	28.0
MIN	22.1	---	13.2	13.8	14.6	14.5	18.3	23.	---	---	---	25.8

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 56	1.6	. 24	3.1	. 21	. 15	. 06	. 12	. 28	. 76	---	. 18
2	. 78	---	. 35	1.3	2.9	. 16	. 06	. 13	. 34	2.1	. 23	. 18
3	2.9	---	. 50	. 82	. 61	. 14	. 06	. 14	. 93	. 26	. 17	. 19
4	18.6	---	. 55	. 17	. 16	. 15	. 06	. 15	. 88	. 16	. 14	. 14
5	12.2	---	. 79	. 84	. 16	. 41	. 05	. 16	. 34	. 16	. 14	. 16
6	1.1	---	. 50	. 32	. 17	. 73	. 05	. 14	. 19	. 16	. 14	. 47
7	. 74	---	1.1	2.9	. 21	. 56	. 05	. 13	. 18	. 16	. 15	. 15
8	. 43	---	. 20	. 17	. 31	. 14	. 05	. 12	. 17	. 16	. 37	. 19
9	. 20	---	1.0	. 23	. 22	. 14	. 05	. 11	. 39	. 21	. 45	. 21
10	. 41	-	. 17	. 47	. 19	. 14	. 05	. 10	. 17	. 20	. 78	. 20
11	. 76	---	. 18	. 38	. 32	. 13	. 05	. 10	. 18	. 19	. 43	. 23
12	. 17	---	. 21	. 29	. 15	. 13	. 05	. 09	. 20	---	. 15	. 26
13	. 31	-	. 42	. 16	. 14	. 16	. 05	. 09	. 21	-	. 15	. 36
14	. 98	---	. 59	. 25	. 18	. 20	. 06	. 09	. 32	---	. 16	. 46
15	. 16	---	. 88	. 21	. 16	. 15	. 06	. 09	. 37	---	. 26	. 43
16	. 16	---	1.2	. 43	. 22	. 21	. 06	. 11	. 23	. 15	. 23	. 87
17	. 16	---	1.8	. 75	. 14	. 13	. 07	. 14	. 19	. 13	. 19	. 52
18	. 17	---	2.3	1.6	. 28	. 25	. 07	. 13	. 43	. 12	. 15	. 21
19	. 56	---	3.8	3.3	. 58	. 78	. 08	. 12	. 21	---	. 13	. 14
20	1.0	---	2.1	. 16	. 70	. 09	. 08	. 14	. 18	---	. 23	. 14
21	1.5	---	. 20	. 69	. 15	. 09	. 08	. 13	. 18	. 13	. 14	. 88
22	. 24	---	1.2	. 16	. 18	. 09	. 09	. 13	. 17	. 13	. 36	. 21
23	1.2	---	. 79	. 37	. 16	. 09	. 09	. 14	. 17	. 14	. 41	. 14
24	1.5	---	. 21	1.3	. 15	. 09	. 09	. 13	. 17	. 17	. 38	. 80
25	2.1	1.1	. 25	. 16	. 15	. 09	. 10	. 14	. 22	. 14	. 80	. 92
26	2.9	. 53	1.1	. 90	. 15	. 07	. 10	. 15	. 30	. 13	. 23	1.7
27	4.0	1.0	. 46	. 17	. 15	. 08	. 11	. 15	. 76	. 68	. 74	. 68
28	2.7	. 38	. 81	. 16	. 15	. 07	. 11	. 16	1.7	---	. 77	. 60
29	. 16	. 19	. 40	. 47	. 15	. 06	. 12	. 15	1.4	--	. 62	. 46
30	. 17	. 17	1.7	. 40	---	. 06	. 14	. 16	1.4	1.2	. 58	. 37
31	. 44	-	2.8	. 39	---	. 06	---	. 29	---	---	. 30	---
MEAN	1.9	---	. 93	. 74	. 32	. 19	. 07	. 13	. 43	---	---	. 41
MAX	18.6	---	3.8	3.3	2.9	. 78	. 14	. 29	1.7	---	---	1.7
MIN	. 16	---	. 17	. 16	. 14	. 06	. 05	. 09	. 17	---	---	. 14

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2310	3280	1990	2780	3300	5980	5710	--	3010	3360	3800	3540
2	2270	4040	3530	2720	3970	5910	4990	---	3720	3650	3090	3240
3	2390	5160	2630	2460	4280	5410	4220	---	3730	3350	3310	3020
4	3380	3330	---	2260	4010	6430	4460	---	3740	3080	3340	3640
5	2580	2970	---	2820	7980	6150	4480	---	4400	3690	3870	3500
6	2160	3210	---	3260	4970	7550	4640	---	4050	3400	4060	3010
7	-2410	3020	---	3340	4740	7590	5000	---	3970	3720	4380	2600
8	7510	3850	---	2820	5260	6690	5060	---	4060	3800	4770	2510
9	3910	4180	---	3110	-	7240	4560	---	4440	3120	4730	e2550
10	4200	3290	953	4580	---	6610	4290	---	3880	3140	4920	2150
11	4770	3900	---	4040	---	6680	3710	---	3650	3190	4600	2280
12	5450	4030	3380	4010	---	6730	3210	---	2780	3440	4310	2500
13	5410	3870	3750	4170	4710	5730	4200	---	2450	3130	3930	2790
14	5230	3680	3420	3980	3130	5700	5150	---	2790	3070	3760	2790
15	5140	4490	3160	e3010	6140	7590	---	---	3260	2950	4160	2780
16	5400	2400	2560	4790	5640	7380	---	---	3160	e3160	4460	3030
17	5470	2370	1970	4940	5500	6180	---	3540	3160	3230	4350	3070
18	5450	2210	3150	4800	4510	5250	---	3740	3400	3340	e4330	3150
19	6920	2240	5370	2910	4710	5060	---	3750	3720	3160	e4190	2770
20	4570	2220	3490	4310	5010	5180	---	3850	3640	2860	e4070	2470
21	4810	2470	3530	4400	4660	5760	---	4140	3100	3140	3980	2450
22	4490	4050	2710	4220	5320	5890	---	3840	3140	3420	4320	2490
23	4860	2540	2860	4470	6750	5780	---	3900	2870	2840	4290	2090
24	5330	2730	3470	4230	6790	6050	---	3230	3420	3190	3970	1810
25	4690	2470	4380	4730	6470	5220	---	2940	3360	3060	4270	1640
26	4650	4850	3100	5210	5550	5180	---	3400	3260	2740	3870	2600
27	5120	3820	3550	e4290	5300	5340	---	3430	2960	2660	3240	2310
28	4710	2940	3470	4240	6030	4810	---	3960	2800	2970	3100	2400
29	4130	2310	3390	4380	---	5180	---	3180	2820	2900	3400	2670
30	4070	1840	3380	4660	---	4780	---	3180	3170	3140	3330	2210
31	3910		3100	4240	---	6140	--	2740	---	3400	3330	
MEAN	4286	3259	---	3877	---	6038	---	---	3397	3203	3985	2669
MAX	7510	5160	---	5210	---	7590	---	---	4440	3800	4920	3640
MIN	-2410	1840	---	2260	---	4780	---	---	2450	2660	3090	1640

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13.65	14.32	14.73	13.27	13.17	13.46	12.63	---	14.29	13.47	14.12	13.75
2	13.67	14.28	13.21	13.26	13.20	13.41	13.13	---	13.88	13.58	14.31	13.86
3	13.46	12.69	12.95	13.36	13.13	13.63	13.51	---	13.78	13.52	14.27	13.90
4	12.94	13.18		13.46	13.40	13.37	14.05	---	13.78	13.71	14.33	13.88
5	12.78	13.91	---	13.80	---	13.38	14.37	---	13.47	13.71	14.28	13.54
6	13.24	13.98	---	13.63	---	13.15	14.35	---	13.42	13.80	14.14	13.70
7	15.23	14.28	---	13.21	13.75	12.70	14.10	---	13.36	13.45	13.99	13.89
8	15.68	14.45	---	13.52	---	13.46	13.39	---	13.23	13.13	14.01	14.11
9	14.11	12.90	---	14.26	---	13.57	13.38	---	13.34	13.27	14.07	e14.12
10	13.62	13.18		13.34	---	13.84	13.35	---	13.42	13.32	14.05	14.39
11	13.49	12.94		13.40	---	13.77	13.85	---	13.36	13.19	14.05	14.53
12	13.18	12.63	13.79	12.76	---	13.51	14.47	---	13.80	13.07	14.01	14.44
13	13.25	12.67	13.65	12.36	---	13.92	13.67	---	14.11	13.01	13.75	14.44
14	13.66	12.74	13.13	12.50	---	14.22	12.42	---	14.15	13.00	13.72	14.48
15	14.10	12.13	13.18	e13.28	12.97	13.21	---	---	13.98	13.00	13.85	14.66
16	14.27	12.90	13.51	13.67	12.09	12.34	---	---	13.58	e12.90	13.79	14.74
17	14.32	13.89	14.34	12.14	11.97	12.73	---	13.23	13.70	12.91	13.77	14.66
18	14.40	14.13	13.70	12.18	12.62	13.17	---	13.23	13.91	13.13	e13.72	14.61
19	13.07	14.18	12.69	12.96	13.15	13.43	---	13.55	13.71	13.70	e13.86	14.49
20	14.07	14.23	12.03	13.15	13.39	13.70	---	13.57	13.38	14.03	e13.84	14.46
21	14.27	14.26	12.25	13.22	13.87	13.91	---	13.45	13.53	14.00	14.01	14.41
22	14.53	13.44	12.65	13.43	13.84	13.69	---	13.41	13.48	13.92	13.79	14.38
23	14.74	13.49	13.31	13.45	12.84	13.66	---	13.50	13.56	14.15	13.58	14.34
24	14.23	14.03	13.65	13.56	12.52	13.41	---	13.85	13.63	14.11	13.52	14.67
25	14.49	14.52	13.05	13.65	12.77	13.74	---	14.12	13.50	13.96	13.28	14.97
26	14.63	13.71	13.28	12.70	13.52	13.99	---	13.88	13.43	13.92	13.26	15.17
27	14.34	12.49	13.41	e13.09	13.90	13.67	---	13.54	13.42	14.16	13.53	14.99
28	14.23	12.51	13.39	13.38	13.65	13.84	---	12.90	13.45	14.16	13.73	14.94
29	14.21	13.15	13.45	13.02	---	13.84	---	13.10	13.57	14.19	13.71	14.21
30	14.30	14.11	13.24	12.81	---	13.68	---	13.20	13.49	14.25	13.62	14.34
31	14.19	---	13.22	12.69	---	13.11	---	13.50	---	14.27	13.80	
MEAN	14.01	13.51	---	13.18	---	13.50	---	---	13.62	13.61	13.86	14.37
MAX	15.68	14.52	---	14.26	---	14.22	---	---	14.29	14.27	14.33	15.17
MIN	12.78	12.13	---	12.14	---	12.34	---	---	13.23	12.90	13.26	13.54

e Estimated

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.0	22.6	18.9	18.2	15.6	18.1	21.2	23.1	25.2	27.6	27.3	26.8
2	25.7	22.7	18.8	18.5	15.8	18.2	21.0	23.4	25.0	28.0	26.7	26.8
3	25.3	21.7	18.6	18.7	15.9	18.4	21.0	23.8	25.2	28.5	26.9	27.1
4	24.7	20.6	18.3	18.9	16.2	19.1	21.2	23.6	25.5	28.7	27.3	27.0
5	23.7	20.8	17.8	19.3	---	19.9	21.5	23.1	25.3	27.9	27.4	26.5
6	23.2	21.1	18.2	19.7	---	20.3	21.9	23.0	24.6	27.0	27.7	26.1
7	22.8	21.5	18.2	19.9	16.5	19.7	22.3	23.0	24.0	27.3	28.1	26.1
8	22.5	21.7	18.0	19.9	---	19.8	22.1	23.2	24.0	27.8	27.4	26.2
9	21.9	20.7	e17.6	19.6	---	20.3	21.7	23.4	23.9	27.4	27.2	e26.3
10	21.9	19.9	---	18.3	---	20.6	21.6	23.4	23.8	27.0	27.5	26.2
11	21.9	19.4	---	17.3	---	20.7	21.4	23.0	24.1	27.1	27.6	26.3
12	21.6	18.5	17.1	16.7	---	20.6	21.3	23.0	24.6	27.5	27.8	26.5
13	21.1	18.0	17.6	15.9	---	20.6	21.8	22.7	25.2	27.6	28.1	26.8
14	21.0	18.1	17.7	15.4	---	20.6	21.5	23.1	25.8	28.1	28.2	27.1
15	21.0	18.1	17.7	e15.3	17.5	20.6	20.7	23.6	26.2	28.4	28.3	27.4
16	20.9	17.5	17.5	15.4	16.8	20.2	20.7	23.8	26.6	e28.5	28.5	27.5
17	21.1	17.7	17.4	14.4	16.6	19.8	21.2	24.1	27.1	28.2	28.3	27.1
18	21.4	18.3	17.1	13.2	16.5	20.0	20.8	24.4	27.4	28.1	27.8	27.1
19	20.8	18.8	15.9	12.4	16.5	20.3	20.7	24.7	27.3	27.5	28.0	27.2
20	20.3	19.3	14.4	12.1	16.7	20.4	21.0	25.0	27.0	27.1	28.3	27.2
21	20.1	19.8	13.7	12.0	17.2	20.5	21.5	25.3	27.1	27.4	28.4	27.4
22	20.1	20.2	13.7	12.5	17.4	20.8	21.9	25.5	27.3	27.5	28.0	27.5
23	20.4	19.5	14.3	13.1	16.7	20.7	22.3	25.2	27.3	27.6	27.6	27.3
24	20.6	19.2	15.1	13.5	16.5	20.5	22.2	25.2	26.7	27.7	27.3	27.3
25	20.9	19.3	16.0	14.2	16.4	20.8	22.6	25.4	26.7	28.1	27.2	27.3
26	21.4	19.6	16.4	13.9	16.5	21.1	22.9	25.4	26.9	28.2	27.0	26.9
27	21.6	19.0	16.8	e14.1	17.3	21.3	22.7	25.8	27.0	27.9	27.0	26.4
28	21.8	18.4	17.1	14.9	17.9	21.6	22.8	25.8	27.4	27.7	27.1	26.3
29	22.1	18.3	17.3	15.8	---	21.7	22.7	25.5	27.9	27.6	27.2	26.1
30	22.4	18.7	17.6	15.9	---	21.5	22.8	25.2	27.9	27.9	27.3	26.2
31	22.5	---	17.9	15.5	-	21.8	---	25.2	---	28.0	27.1	---
MEAN	22.0	19.6	---	16.0	---	20.3	21.7	24.2	26.0	27.8	27.6	26.8
MAX	26.0	22.7	---	19.9	---	21.8	22.9	25.8	27.9	28.7	28.5	27.5
MIN	20.1	17.5	---	12.0	---	18.1	20.7	22.7	23.8	27.0	26.7	26.1

e Estimated
SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 17	. 10	. 74	. 10	. 07	. 04	. 08	. 12	. 16	. 11	. 16	. 16
2	. 17	. 10	. 14	. 11	. 07	. 04	. 08	. 12	. 12	. 12	. 50	. 66
3	. 15	. 10	. 14	. 11	. 07	. 04	. 08	. 10	. 12	. 19	. 22	. 64
4	. 24	. 11	. 14	. 11	. 07	. 04	. 09	. 07	. 14	. 46	. 16	. 25
5	. 14	. 11	. 43	. 12	-	. 04	. 10	. 06	. 11	. 13	. 15	. 16
6	. 14	. 11	. 57	. 12	---	. 04	. 10	. 09	. 10	. 12	. 14	. 17
7	3.5	. 13	. 16	. 11	. 06	. 04	. 09	. 06	. 09	. 12	. 11	. 18
8	8.9	. 44	. 13	. 12	---	. 04	. 10	. 09	. 09	. 11	. 08	. 35
9	. 40	. 12	. 13	1.8	---	. 04	. 10	. 06	. 09	. 11	. 07	---
10	. 23	. 12	. 15	. 61	---	. 04	. 10	. 06	. 09	. 12	. 07	. 32
11	. 14	. 12	---	. 50	---	. 04	. 11	. 07	. 09	. 11	. 07	. 31
12	. 10	. 12	. 31	. 12	---	. 05	. 11	. 08	. 09	. 11	. 07	. 43
13	. 07	. 13	. 30	. 11	---	. 05	. 11	. 08	. 09	. 12	. 07	. 63
14	. 05	. 13	. 12	. 11	-	. 06	. 11	. 09	. 09	. 12	. 08	1.3
15	. 05	. 13	. 12	---	. 08	. 06	. 11	. 10	. 09	. 12	. 09	2.0
16	. 05	. 13	. 12	. 08	. 08	. 07	. 11	. 10	. 10	---	. 09	2.2
17	. 05	. 16	. 22	. 08	. 08	. 07	. 11	. 11	. 10	. 13	. 26	1.6
18	. 05	. 28	. 21	. 08	. 08	. 08	. 11	. 11	. 11	. 27	. 39	1.1
19	. 05	. 27	. 12	. 07	. 07	. 08	. 11	. 11	. 11	. 41	. 49	. 62
20	. 05	. 29	. 12	. 07	. 06	. 08	. 12	. 11	. 10	. 33	. 29	. 60
21	. 05	. 28	. 12	. 07	. 05	. 08	. 14	. 11	. 16	. 20	. 15	. 47
22	. 10	. 21	. 12	. 07	. 05	. 08	. 16	. 12	. 15	. 25	. 10	. 46
23	. 08	. 15	. 13	. 07	. 05	. 08	. 21	. 12	. 24	. 27	. 10	. 21
24	. 07	. 50	. 37	. 07	. 04	. 08	. 13	. 20	. 12	. 15	. 11	. 43
25	. 20	1.7	. 13	. 08	. 04	. 08	. 18	. 17	. 12	. 15	. 11	. 44
26	. 12	. 71	. 11	. 07	. 04	. 08	. 13	. 12	. 12	. 15	. 11	. 26
27	. 09	. 14	. 15	---	. 04	. 08	. 15	. 12	. 11	. 15	. 16	. 47
28	. 09	. 14	. 11	. 08	. 04	. 08	. 25	. 13	. 11	. 15	. 31	. 71
29	. 09	. 14	. 11	. 08	---	. 08	. 11	. 13	. 11	. 14	. 13	. 22
30	. 11	. 28	. 10	. 08	---	. 08	. 11	. 13	. 11	. 15	. 14	. 28
31	. 10	---	. 10	. 08	---	. 08	---	. 13	---	. 16	. 16	---
MEAN	. 51	. 25	---	---	---	. 06	. 12	. 11	. 11	---	. 17	---
MAX	8.9	1.7	---	---	---	. 08	. 25	. 20	. 24	---	. 50	---
MIN	. 05	. 10	---	---	---	. 04	. 08	. 06	. 09	---	. 07	--

291841083070800 EAST PASS SUWANNEE RIVER NEAR SUWANNEE, FL--Continued. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP
1	2350	3420	7060	e9090	e8840		15200	7650	3420	2700	2570	2730
2	2850	4920	6030	8480	7490	---	15500	7580	3490	2570	2870	2220
3	2410	4380	5740	8420	7000		14800	6840	3370	2920	2580	1410
4	2380	4680	5310	8380	11400	---	14600	6060	3280	2930	2810	
5	2600	4430	6670	7970	10800	---	16000	6720	3280	2690	e2880	---
6	2370	4160	6010	7980	10500		15200	6280	3650	2720	3110	---
7	2180	5210	5730	5960	11000	---	13400	e5440	4100	2740	2830	
8	1920	5230	4680	8360	10600		12000	5220	3880	3060	3030	
9	2500	4550	e5060	9670	10600	---	11900	6030	3550	2800	3100	---
10	2640	4240	5170	e9690	9880	---	14000	4730	3540	2550	2800	---
11	1940	4880	6260	e9480	---	---	14000	6570	3620	2630	2540	---
12	1980	4360	7370	e8740	---	---	12000	5790	3370	2870	2740	---
13	2000	3900	6840	8830			10600	5770	3260	2970	2800	
14	2570	6080	7510	8860	---	---	9480	5280	3290	2930	2700	---
15	2600	6350	7480	7370	---		9780	5310	2580	2300	2510	3290
16	---	6420	7570	8980	---	---	8770	5190	2840	2680	2620	3450
17	---	6040	6340	9330	---	---	8940	4380	3180	2470	2540	3120
18	---	5320	6400	e8590			9550	4920	3070	2540	3240	2970
19	---	5460	6530	8000	---	---	8880	5250	3000	2780	2930	2970
20	---	5260	6570	e9080	---		10400	4740	3230	3070	2900	3390
21	---	4540	6010	e8660	---	---	9480	4860	3500	3080	3160	3180
22	---	5120	5930	e6860	---	---	9860	4910	3520	2840	2840	3370
23	---	6080	6730	e7470	---		9670	4800	3600	2850	2900	3540
24		6840	5530	e10000	---	---	9320	4780	3100	2800	2840	4220
25	---	e6170	7260	e9410			8540	e3410	3290	2840	2850	3950
26	---	5480	7610	8280	---	---	7890	e3630	3020	2800	2360	971
27	---	5840	7600	8740			7720	4300	2980	2580	2330	4950
28	---	5480	8530	9930	---		7910	4370	2990	2550	2350	3540
29	---	5130	7610	8470	---	---	7790	4280	2990	2500	2280	1750
30		5480	9140	8670			6710	4220	2250	2350	2220	1320
31	---		8470	e8800	---	---	---	3880		2340	2290	
MEAN	---	5182	6669	8598	---	---	11000	5264	3275	2724	2726	---
MAX	---	6840	9140	10000	---	---	16000	7650	4100	3080	3240	---
MIN	---	3420	4680	5960	---	---	6710	3410	2250	2300	2220	---

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14.32	14.53	13.60	12.49	14.01	---	15.35	14.19	13.80	13.64	13.36	13.45
2	13.92	14.34	13.33	12.96	14.67	---	15.16	13.91	13.77	13.35	13.22	13.74
3	13.31	13.44	13.48	13.24	15.40	---	15.15	13.77	13.59	13.08	13.35	16.11
4	13.47	12.90	13.86	13.40	14.65	---	15.16	14.01	13.76	13.04	13.54	-
5	13.39	13.08	12.95	13.63	13.73	---	14.63	13.84	13.90	13.11	13.52	-
6	13.35	13.33	12.67	13.64	13.65	---	14.54	13.73	13.98	13.44	13.36	---
7	13.28	13.34	12.65	14.35	13.51	---	14.79	e14.18	13.50	13.64	13.62	---
8	13.40	12.99	13.33	14.38	13.57	---	15.18	14.68	13.45	13.61	13.58	---
9	13.43	13.26	13.78	13.84	13.62	---	15.30	14.28	13.92	13.80	13.32	---
10	13.25	13.70	13.88	13.47	13.92	---	14.43	14.83	13.92	13.90	13.31	-
11	13.23	13.68	13.53	13.39	---	---	13.54	14.11	13.83	13.72	13.50	---
12	13.65	14.17	12.98	13.65	---	---	13.77	13.83	13.84	13.44	13.47	-
13	13.89	14.93	13.28	13.94	---	---	14.34	13.80	13.93	13.47	13.26	-
14	13.81	14.56	13.04	13.91	---	---	14.72	13.89	13.88	13.63	13.10	-
15	13.86	13.46	12.71	14.35	---	---	14.65	13.94	14.24	13.77	13.21	13.69
16	--	12.92	12.35	14.38	---	---	14.75	13.96	14.11	13.75	13.15	13.87
17	---	12.44	12.99	13.44	---	---	14.70	14.18	13.77	13.74	13.21	14.39
18	---	13.10	13.19	13.54	---	---	14.25	14.17	13.53	13.62	13.19	14.35
19	---	13.13	13.19	14.11	---	---	14.39	13.85	13.47	13.48	13.29	14.41
20	---	13.31	13.12	13.41	-	---	13.87	13.67	13.52	13.61	13.33	14.29
21	-	13.69	13.51	13.45	--	---	13.80	13.63	13.53	13.57	13.26	14.24
22	---	13.55	13.79	14.10	-	---	13.68	13.66	13.58	13.76	13.45	14.00
23	---	13.25	13.56	14.39	---	---	13.59	13.94	13.61	13.92	13.47	13.77
24	---	12.40	14.09	13.77	--	---	13.53	14.05	13.79	13.76	13.51	13.16
25	---	12.55	13.94	13.24	---	---	13.81	e14.08	13.78	13.72	13.29	12.77
26	---	13.26	13.59	13.61	---	---	14.24	e14.18	13.54	13.59	13.54	13.91
27	---	13.39	13.95	14.22	---	---	14.44	14.44	13.60	13.65	13.72	14.64
28	---	13.72	12.95	13.51	---	---	14.36	14.23	13.57	13.68	13.59	14.39
29	---	14.07	13.83	13.79	---	---	14.22	14.08	13.31	13.56	13.65	14.52
30	---	14.39	13.14	14.05	---	---	14.46	13.81	13.69	13.55	13.45	15.60
31	---	---	13.14	14.06	--	-	---	13.73	---	13.57	13.57	-
MEAN	---	13.50	13.34	13.73	-	---	14.43	14.02	13.72	13.59	13.40	-
MAX	-	14.93	14.09	14.39	--	---	15.35	14.83	14.24	13.92	13.72	--
MIN	---	12.40	12.35	12.49	---	---	13.53	13.63	13.31	13.04	13.10	---

e Estimated

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.3	20.9	16.3	12.3	---	---	---	---	---	---	---	---
2	26.2	21.4	16.3	11.8	---	---	---	---	---	---	---	---
3	25.9	20.5	16.5	12.1	---	---	---	---	---	---	---	---
4	25.8	19.4	16.9	12.4	---	---	---	---	---			
5	25.7	18.6	16.6	12.8	---	---	---	---	---	---	---	---
6	25.4	18.4	16.0	13.1	---	---	---	---	---	---	---	---
7	25.3	18.3	15.3	13.5	---	---	---	---	---	---	---	---
8	25.1	17.5	14.8	14.5	---	---	---	---	---	---	---	---
9	25.2	16.9	14.9	14.4	12.3	---	---	---	---	---	---	---
10	25.3	16.6	15.6	14.2	12.4	---	---	---	---	---	---	---
11	25.1	16.5	15.8	14.1	---	---	---	---	---	---	---	---
12	25.0	16.6	14.9	14.4	---	---	---	---	---	---	---	---
13	25.0	17.1	13.9	14.7	-	---	---	---	---	---		---
14	25.1	17.7	13.5	15.1	---	---	---	---	---	---	---	---
15	25.0	17.5	13.3	15.5	---	---	---	---	---	---	---	---
16	---	17.1	13.1	15.4	---	---	---	---	---	---	---	---
17	---	16.2	13.4	14.8	---	---	---	---	---	---	---	---
18	---	15.8	13.4	14.7	---	---	---					---
19	---	15.9	13.4	14.9	---	---	---	---	---	---	---	---
20	---	15.8	13.1	14.6	---	---	---	---	---	---	---	---
21	---	15.9	12.8	14.3	---	---	---	---	---	---	---	---
22	---	15.9	12.9	14.5	---	---	---	---	---	---	---	---
23	---	15.6	13.1	15.0	---	---	---	---	---	---	---	---
24	---	14.8	13.3	15.1	---	---	---	---	---	---	---	---
25	---	14.3	14.0	14.3	---	---	---	---	---	---	---	---
26	---	14.5	13.9	13.6	---	---	---	---	---	---	---	---
27	---	14.8	14.1	-	---	---	---	---	---	---	---	---
28	---	15.3	13.6	---	---	---	---	---	---	---	---	---
29	---	15.8	13.1	---	---	---	---	---	---	---	---	---
30	---	16.5	12.8	---	---	---	---	---	---	---	---	---
31	---		12.9	---	---	---	---	---	---	---	---	---
MEAN	---	16.9	14.3	---	---	---	---	---	---	---	---	---
MAX	-	21.4	16.9	---	---	---	---	---	---	---	---	---
MIN	---	14.3	12.8	---	---	---	---	---	---	---	---	---

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	ОСт	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 26	. 94	. 07	. 05	. 05	---	---	---	-	---	---	. 12
2	. 34	2.0	. 08	. 05	. 05	---	---	---	-	---	---	. 34
3	. 24	. 13	. 08	. 05	. 04	---	--	---	---	---	---	15.0
4	. 26	. 11	. 08	. 04	. 04	---	---	---	---	---		---
5	. 25	. 10	. 08	. 04	. 04	---	---	---	---	---	---	--
6	. 22	. 09	. 08	. 04	. 04	---	---	---	---	---	. 30	---
7	. 21	. 08	. 08	. 04	. 04	--	---	---	---	---	. 29	---
8	. 22	. 08	. 08	. 04	. 04	-	---	---	---	---	. 60	---
9	. 28	. 07	. 08	. 04	. 04	--	---	--	--	---	. 28	--
10	. 49	. 07	. 08	. 05	. 04	---	---	---	-	---	. 28	--
11	. 30	. 07	. 07	. 05	---	--	---	---	---	---	. 18	-
12	1.4	. 07	. 07	. 05	---	---	---	---	---	---	. 13	---
13	1.5	. 11	. 06	. 05	-	---	---	---	---	---	. 10	---
14	1.4	. 09	. 06	. 06	---	---	---	--	---	--	. 10	---
15	2.2	. 08	. 06	. 06	---	---	---	---	---	---	. 10	. 14
16	---	. 08	. 07	. 06	---	---	---	---	---	---	. 10	. 39
17	---	. 08	. 07	. 06	---	--	---	---	---	---	. 10	1.3
18	--	. 08	. 07	. 06	-	---	-	---	---	---	. 10	1.3
19	---	. 08	. 07	. 06	--	---	---	---	---	---	. 10	. 91
20	---	. 07	. 06	. 06	--	-	---	---	---	---	. 12	. 42
21	---	. 07	. 06	. 06	---	---	---	---	---	---	. 14	. 15
22	---	. 07	. 06	. 06	---	---	-	---	---	---	. 51	. 11
23	---	. 07	. 05	. 06	---	--	-	--	---	---	. 17	. 10
24	---	. 06	. 05	. 06	---	--	--	---	---	---	. 23	. 10
25	---	. 06	. 05	. 06	--	---	---	---	---	---	. 13	. 10
26	---	. 06	. 05	. 06	---	---	---	---	---	---	. 14	2.0
27	---	. 06	. 05	. 06	---	--	---	---	---	---	. 20	1.9
28	---	. 06	. 05	. 06	---	-	-	---	---	---	. 11	1.1
29	---	. 07	. 05	. 06	---	--	---	---	---	---	. 17	. 58
30	---	. 08	. 05	. 05	---	---	---	---	---	---	. 10	11.3
31	---	---	. 05	. 05	---	---	---	---	---	---	. 33	---
MEAN	---	. 17	. 07	. 05	---	---	---	--	-	---	---	---
MAX	---	2.0	. 08	. 06	---	---	--	--	--	---	--	---
MIN	---	. 06	. 05	. 04	---	-	---	---	--	---	--	---

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5430		3580	2640	2920	---	3080	2640	2250	2360	2050	1950
2	4200	---	3360	1700	3820	---	3620	2240	2300	2620	2260	1950
3	4500	---	3200	4700	3980	---	3370	2060	2460	2400	2250	1420
4	5150	---	3520	3860	3990	---	2600	1840	2160	2170	2080	1610
5	5630	---	3620	3410	3990	---	2920	1290	2420	2050	1560	1770
6	5970	4330	3400	2660	3660	3500	2870	1990	1970	1610	1740	1980
7	6060	4260	e3220	2600	3020	4020	2760	1920	2120	1720	2490	2370
8	---	4040	---	2130	3290	4020	e2750	2210	1900	2010	2620	e1950
9	---	3540	---	2150	e3380	1680	e1050	1720	2170	2600	2600	e2560
10	---	3140	2980	3990	3600	3830	2410	1980	2300	2620	2240	e2060
11	---	3410	3250	2640	3420	3300	2380	2360	2610	2620	2500	e2210
12	---	3650	1970	2020	4090	3160	3250	2510	2770	2610	2820	e2370
13	---	e2880	2800	2470	e5570	1840	3340	2390	2460	2500	2280	e2090
14	---	e3240	4090	2310	4410	3020	2140	2300	2240	2530	2070	e2700
15	-	e3410	2920	3820	3960	5450	1090	3020	2340	2340	2290	e1680
16	---	3150	2580	2890	3540	3620	4250	2350	2090	2570	2540	e1490
17	---	3630	3190	3010	3130	---	2830	2540	1810	2460	2150	1440
18	---	3690	2730	3240	3560	---	2920	2140	2780	2140	1810	736
19	---	3490	2680	3380	3570	e3410	2400	1800	2410	2530	1850	e629
20	---	3500	2940	3210	4100	e3310	2220	2250	2040	1780	2120	e1270
21	---	3970	3250	3060	3620	e2820	2400	2250	2140	1980	2290	e2850
22	---	3700	3050	2100	4220	3650	1800	2180	2110	2060	2180	e2100
23	---	3360	2970	2160	2740	3170	2180	1850	1900	1850	2170	e1970
24	---	3310	2660	4770	3100	2950	2090	1870	2190	1920	2210	e1740
25	---	3060	2940	2850	---	1960	2630	2350	2340	2390	2570	e2240
26	---	3180	2720	5210	---	e3420	1800	2200	2370	2570	2460	e1980
27	---	2990	e2350	2590	-	3760	2110	2370	2210	2390	2410	e2380
28	---	2830	e1230	2790	---	3020	2650	2520	2180	2160	2320	e2190
29	---	2520	2360	3630	---	3420	2940	2840	2280	2140	2110	e1920
30	-	2920	4080	3960	---	3780	2980	2680	2410	2300	2140	e2270
31	---	---	2810	4170	---	e2470		2240		1870	2730	
MEAN	---	---	---	3101	---	---	2594	2223	2258	2254	2255	1929
MAX	-	---	---	5210	---	---	4250	3020	2780	2620	2820	2850
MIN	---	---	---	1700	---	---	1050	1290	1810	1610	1560	629

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14.31		12.92	13.02	13.82	---	13.96	12.57	13.50	13.50	13.63	13.51
2	13.70	---	12.87	13.99	13.93	---	13.44	12.89	13.53	13.21	13.57	13.36
3	13.93		13.23	13.51	13.76	---	13.35	13.32	13.40	13.16	13.51	13.41
4	13.97		13.37	12.41	13.59		13.47	13.69	13.18	13.26	13.32	13.61
5	14.06	---	13.34	11.95	13.15	e13.36	13.32	14.21	12.98	13.31	13.65	13.89
6	14.07	12.64	13.39	12.34	13.15	13.69	13.25	14.17	13.11	13.29	13.93	14.14
7	14.33	12.93	e13.58	12.93	13.54	13.21	13.30	14.03	12.99	13.42	14.05	13.90
8	---	13.15	---	13.26	13.56	12.60	13.25	13.78	13.11	13.57	13.87	e13.75
9	---	13.51		13.42	e13.41	14.14	e13.68	13.49	13.16	13.63	13.93	e13.67
10	---	13.78	12.80	12.18	13.19	13.58	13.64	13.45	13.29	13.49	14.04	e13.41
11	---	13.60	12.68	12.04	13.23	13.09	13.54	13.47	13.31	13.54	14.06	e13.44
12	---	12.95	13.14	12.75	13.37	13.00	13.15	13.45	13.37	13.62	13.58	e13.15
13	---	13.04	13.72	13.34	e12.20	13.55	12.78	13.68	13.40	13.71	13.46	e12.88
14	---	13.46	12.48	13.52	12.06	14.71	13.53	14.02	13.62	13.62	13.75	e12.34
15	---	13.49	12.31	13.42	12.79	13.10	14.87	13.39	13.48	13.61	13.85	e12.40
16	---	13.51	12.46	13.05	13.55	12.64	13.62	13.37	13.57	13.53	13.72	e13.31
17	---	13.36	12.83	13.39	14.11		13.32	13.31	13.67	13.45	13.37	13.13
18	---	13.15	12.70	13.60	14.35	e13.31	12.64	13.49	13.10	13.47	13.62	13.52
19	---	13.07	13.52	13.30	14.09	e13.48	12.87	13.67	12.76	13.30	13.68	e14.33
20	---	13.15	13.33	13.30	13.20	e13.48	13.11	13.57	12.97	13.19	13.81	e14.51
21	---	13.02	13.41	13.47	13.21	e13.73	13.14	13.37	13.10	13.05	13.62	e13.87
22	---	12.50	13.43	13.89	12.31	12.99	13.52	13.35	12.91	13.04	13.61	e13.04
23	---	12.94	13.20	14.15	13.18	e13.35	13.22	13.34	13.02	13.24	13.72	e13.08
24	---	12.91	13.40	13.20	13.19	13.44	13.05	13.59	13.17	13.60	13.74	e13.50
25	---	13.05	13.07	12.38	---	13.65	13.02	13.43	13.21	13.61	13.70	e13.83
26	---	12.81	12.85	12.68	---	e13.37	13.28	13.37	13.28	13.44	13.64	e13.92
27	---	12.64	e12.69	13.01	---	12.83	13.91	13.29	13.58	13.49	13.65	e13.96
28	---	12.67	e13.12	13.35	---	13.04	13.88	13.25	13.55	13.59	13.61	e13.63
29	---	12.91	13.77	13.49	---	13.24	13.65	13.23	13.67	13.74	13.61	e13.77
30	---	13.17	12.97	13.49	---	13.33	13.03	13.18	13.62	13.67	13.70	e13.40
31	---	-	12.99	13.26	---	e13.75		13.41		13.74	13.30	
MEAN	---	---	---	13.13	---	---	13.39	13.48	13.29	13.45	13.69	13.52
MAX	---	---	---	14.15	---	---	14.87	14.21	13.67	13.74	14.06	14.51
MIN	---	---	---	11.95	---	---	12.64	12.57	12.76	13.04	13.30	12.34

e Estimated

SUWANNEE RIVER BASIN
291841083070800 EAST PASS SUWANNEE RIVER NEAR SUWANNEE, FL--Continued.
TEMPERATURE, WATER TOP (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	21.9	23.3	27.1	26.9	30.4	28.9
2	---	---	---	---	---	---	22.6	22.7	27.2	26.7	30.3	28.8
3	---	---	---	---	---	---	23.4	22.7	27.4	26.9	29.8	28.8
4	---	---	---	---	---	---	23.8	22.9	27.7	27.1	29.4	28.9
5	---	---	---	---	---	---	24.3	23.3	27.6	27.5	29.4	29.1
6	---	---	---	---	---	18.1	24.8	23.7	27.1	28.1	29.7	29.1
7	---	---	---	---	---	18.8	25.2	24.0	27.0	28.3	29.3	28.9
8	---	---	---	---	---	18.7	25.2	24.2	26.9	28.7	28.8	28.7
9	---	---	---	---	---	18.3	---	24.9	27.1	28.9	28.2	28.8
10	---	---	---	---	---	18.5	25.0	25.2	27.4	28.8	28.2	28.6
11	---	---	---	---	---	18.9	25.2	25.5	27.8	28.9	28.4	28.4
12	---	---	---	---	---	19.1	25.2	25.6	27.8	28.9	28.5	28.2
13	---	---	---	---	---	19.1	24.8	25.8	27.5	29.0	29.1	27.9
14	---	---	---	---	---	19.4	24.6	26.0	28.0	29.0	29.3	27.8
15	---	---	---	---	---	18.6	24.3	26.0	28.5	29.0	28.7	27.4
16	---	---	---	---	---	18.3	23.9	26.1	28.7	29.0	28.5	27.3
17	---	---	---	---	---	18.5	22.7	26.1	---	29.0	28.8	27.0
18	---	---	---	---	---	19.1	21.9	26.2	27.7	29.0	29.0	27.1
19	---	---	---	---	---	19.6	21.7	26.6	27.5	29.2	29.0	27.1
20	---	---	---	---	---	20.1	21.9	26.7	27.4	29.4	28.7	26.8
21	---	---	---	---	---	20.4	22.3	26.7	27.5	29.6	28.1	26.4
22	---	---	---	---	---	20.4	22.8	26.6	27.5	29.7	28.4	25.8
23	---	---	---	---	---	---	23.5	26.6	27.9	29.6	28.6	25.2
24	---	---	---	---	---	20.8	24.3	26.6	27.9	29.8	28.8	25.0
25	---	---	---	---	---	21.0	25.0	26.8	27.7	29.9	29.0	25.2
26	---	---	---	---	---	21.1	25.4	27.1	27.7	30.1	29.3	25.4
27	---	---	---	---	---	21.0	25.9	27.4	27.8	30.3	29.5	25.5
28	--	---	---	---	---	20.9	26.0	27.6	27.5	30.5	29.7	26.0
29	---	---	---	---	---	21.1	25.7	27.7	27.1	30.3	29.8	26.5
30	---	---	---	---	---	21.4	24.9	27.3	27.0	30.2	29.8	26.4
31	---	-	-	-	--	21.5	---	27.1	-	30.2	29.5	---
MEAN	---	---	---	---	---	---	---	25.6	---	29.0	29.1	27.4
MAX	---	---	---	---	---	---	---	27.7	---	30.5	30.4	29.1
MIN	---	---	---	---	--	---	---	22.7	---	26.7	28.1	25.0

TEMPERATURE, WATER MIDDLE (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

TEMPERATURE, WATER BOTTOM (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---		21.9	23.3	27.1	26.9	30.4	28.9
2				---	---	---	22.6	22.7	27.2	26.7	30.3	28.8
3	---	---	---	---	---	---	23.4	22.7	27.4	26.9	29.8	28.8
4	---	---	---	---	---	---	23.8	22.9	27.7	27.1	29.4	29.1
5	---	---	---	---	---	---	24.3	23.3	27.6	27.5	29.4	29.2
6	---	---	---	---	---	18.1	24.7	23.7	27.1	28.1	29.7	29.1
7	---	---	---	---	---	18.8	25.1	24.0	27.0	28.2	29.4	28.9
8	---	---	---	---	---	18.7	25.2	24.2	26.9	28.8	28.8	28.7
9	---	---	---	---	---	18.2	---	24.9	27.1	28.9	28.2	28.8
10	---	---	---	---	---	18.5	25.0	25.2	27.4	28.8	28.1	28.6
11	---	---	---	---	---	18.9	25.1	25.5	27.8	28.9	28.4	28.4
12	---	---	---	---	---	19.0	25.2	25.6	27.8	28.9	28.5	28.2
13	---	---	---	---	---	19.1	24.8	25.8	27.5	29.0	29.2	27.9
14	---	---	---	---	---	19.3	24.5	26.0	28.0	29.1	29.4	27.7
15	---	---	---	---	---	18.6	24.3	25.9	28.6	29.0	28.7	27.4
16	---	---	---	---	---	18.3	23.9	26.0	28.7	29.0	28.5	27.3
17	---	---	---	---	---	18.5	22.7	26.1		29.0	28.8	27.3
18	---	---	---	---	---	19.1	21.9	26.2	27.7	29.0	29.0	27.6
19	---	---	---	---	---	19.5	21.7	26.6	27.5	29.2	28.9	27.3
20	---	---	---	---	---	20.1	21.9	26.7	27.4	29.4	28.7	26.8
21	---	---	---	---	---	20.4	22.2	26.7	27.5	29.7	28.1	26.5
22	---		---	---	---	20.4	22.7	26.6	27.5	29.7	28.4	25.8
23	---	---	---	---	---	---	23.5	26.5	27.9	29.6	28.6	25.2
24	---	---	---	---	---	20.7	24.2	26.6	27.9	29.8	28.8	25.0
25	---	---	---	---	---	21.0	25.0	26.7	27.7	29.9	29.1	25.2
26	---	---	---	---	---	21.1	25.4	27.1	27.7	30.1	29.3	25.4
27	---	---	---	---	---	21.0	25.9	27.4	27.8	30.3	29.6	25.6
28	---	---	---	---	---	20.9	26.0	27.6	27.5	30.5	29.7	26.0
29	---	---	---	---	---	21.1	25.7	27.7	27.1	30.3	29.8	26.5
30	---	---	---	---	---	21.4	24.9	27.2	27.0	30.2	29.8	26.5
31	---	---	---	---	---	21.5	---	27.1	---	30.2	29.5	
MEAN	---	---	---	---	---	---	---	25.6	---	29.0	29.1	27.4
MAX	---	---	---	---	---	--	--	27.7	--	30.5	30.4	29.2
MIN	---	---	---	---	---	---	---	22.7	---	26.7	28.1	25.0

SALINITY TOP (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	ост	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	. 27	. 18	. 41	. 34	. 42	. 30
2	---	---	---	---	---	---	. 16	. 23	. 44	. 22	. 30	. 22
3	---	---	---	---	---	---	. 18	. 74	. 31	. 24	. 23	. 28
4	---	---	---	---	---	---	. 18	. 54	. 20	. 20	. 20	. 91
5	---	---	---	---	---	---	. 17	1.2	. 19	. 21	1.2	1.8
6	---	---	---	---	---	. 14	. 18	. 31	. 18	. 30	. 93	2.3
7	---	---	---	---	---	. 13	. 17	. 25	. 18	. 51	1.1	. 96
8	---	---	---	---	---	. 14	. 17	. 19	. 20	. 79	. 47	1.3
9	---	---	---	---	---	. 46	---	. 22	. 27	. 75	. 45	1.5
10	---	---	---	---	---	. 16	. 16	. 30	. 45	. 60	1.1	1.2
11	---	---	---	---	---	. 14	. 16	. 40	. 37	1.5	1.0	. 92
12	---	---	---	---	---	. 14	. 16	. 46	. 85	1.4	. 43	. 32
13	---	---	---	---	---	. 57	. 18	. 53	1.1	1.4	. 70	. 23
14	---	---	---	---	---	. 65	. 60	1.6	1.2	1.4	. 74	. 18
15	---	---	---	---	---	. 14	3.7	. 36	1.1	. 74	. 33	. 19
16	---	---	---	---	---	. 14	. 38	1.0	. 94	. 35	. 28	1.7
17	---	---	---	---	---	. 16	. 20	. 78	. 56	. 23	. 18	. 67
18	---	---	---	---	---	. 28	. 18	. 94	. 20	. 23	. 34	3.5
19	---	---	---	---	---	. 29	. 22	. 79	. 19	. 18	. 33	6.7
20	---	---	---	---	---	. 24	. 31	. 23	. 19	. 19	. 24	4.1
21	---	---	---	---	---	. 25	. 19	. 19	. 18	. 28	. 18	1.4
22	---	---	---	---	---	. 15	. 18	. 19	. 19	. 30	. 29	. 63
23	--	---	---	---	---	---	. 18	. 19	. 29	. 67	. 30	1.1
24	---	---	---	---	---	. 14	. 18	. 21	. 73	. 70	. 60	2.5
25	---	---	---	---	---	. 19	. 18	. 20	. 69	. 52	1.1	3.8
26	---	---	---	---	---	. 14	. 27	. 20	1.1	. 37	1.2	2.8
27	---	---	---	---	---	. 14	. 81	. 19	1.1	. 78	1.3	1.7
28	---	---	---	---	---	. 15	. 44	. 25	1.0	1.1	1.6	. 87
29	---	---	---	---	---	. 17	. 25	. 32	. 65	1.2	1.4	1.3
30	--	---	---	---	---	. 19	. 19	. 22	. 33	. 60	1.1	. 48
31	---	---	---	---	---	. 40	---	. 44	---	. 86	. 29	---
MEAN	---	---	---	---	---	---	-	. 45	. 53	. 62	. 66	1.5
MAX	---	---	---	---	--	--	---	1.6	1.2	1.5	1.6	6.7
MIN	---	---	---	---	---	---	---	. 18	. 18	. 18	. 18	. 18

291841083070800 EAST PASS SUWANNEE RIVER NEAR SUWANNEE, FL--Continued.
SALINITY MIDDLE (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	ОСт	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 11	---	. 18	. 25	. 18	. 12	---	---	---	---	---	---
2	. 10	---	. 18	1.6	1.0	. 14	---	---	---	---	---	---
3	. 21	---	. 33	1.2	. 14	. 31	---	---	---	---	---	---
4	---	---	. 61	. 17	. 10	. 13	---	---	---	---	---	---
5	---	. 14	. 43	. 17	. 10	. 14	---	---	---	---	---	---
6	-	. 15	. 33	. 17	. 10	. 13	---	---	---	---	---	---
7	---	. 15	---	. 17	. 10	. 13	---	---	---	---	---	---
8	---	. 15	---	. 30	. 10	. 13	---	---	---	---	---	---
9	---	. 16	-	. 24	---	. 80	. 17	---	---	---	---	---
10	---	. 15	. 17	. 17	. 10	. 21	. 16	---	---	---	---	---
11	---	. 16	. 17	. 17	. 10	. 13	. 16	---	---	---	---	---
12	---	. 16	. 28	. 62	. 10	. 14	. 16	---	---	---	---	---
13	---	. 17	. 18	. 62	---	. 60	. 17	---	---	---	---	---
14	---	. 17	. 17	. 63	. 09	1.1	. 75	---	---	---	---	---
15	---	. 17	. 17	1.2	. 10	. 14	4.6	---	---	---	---	---
16	---	. 16	. 20	. 17	. 12	---	. 47	---	---	---	---	---
17	---	. 19	. 26	. 57	. 94	---	. 20	---	---	---	---	---
18	---	. 17	. 18	. 74	1.2	---	. 18	---	---	---	---	---
19	---	. 17	. 56	. 21	. 12	---	. 22	---	---	---	---	---
20	---	. 22	. 22	. 25	. 11	---	. 33	---	---	---	---	---
21	---	. 21	. 80	. 23	. 12	---	. 18	---	---	---	---	---
22	---	. 16	. 39	. 52	. 12	---	---	---	---	---	---	---
23	---	. 16	. 19	. 37	. 12	---	---	---	---		---	---
24	---	. 17	. 24	. 15	. 12	---	---	---	---	---	---	
25	---	. 17	. 18	. 15	. 13	---	---	---	---	---	---	---
26	---	. 17	. 18	. 16	. 13	---	---	---	---	---	---	---
27	---	. 17	---	. 27	. 14	---	---	---	---	---	---	---
28	---	. 17	---	. 24	. 40	---	---	---	---	---	---	---
29	---	. 19	1.0	. 39	---	---	---	---	---	---	---	---
30	---	. 19	. 44	. 45	---	---	---	---	---	---	---	---
31	---	---	. 19	. 16	---	---	---	---	---	---	---	---
MEAN	---	---	---	. 41	---	---	---	---	---	---	---	---
MAX	-	---	-	1.6	---	---	---	---	---	---	---	---
MIN	---	---	---	. 15	---	---	---	---	---	---	---	---

SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	ОСт	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	. 30	. 18	. 45	. 38	. 55	. 49
2	---	---	---	---	---	---	. 16	. 23	. 52	. 24	. 34	. 24
3	---	---	---	---	---	---	. 18	1.0	. 39	. 26	. 25	. 52
4	-	-	---	---	---	---	. 18	. 74	. 20	. 21	. 20	2.0
5	---	---	---	---	---	---	. 17	1.7	. 18	. 21	1.8	2.3
6	---	-	---	---	---	. 14	. 19	. 43	. 18	. 43	1.3	3.4
7	---	---	---	---	---	. 13	. 17	. 34	. 18	. 70	1.6	1.5
8	---	---	---	---	---	. 13	. 17	. 18	. 19	1.4	. 64	1.9
9	---	-	---	---	--	. 83	---	. 56	. 32	1.1	. 64	2.3
10	---	---	---	---	---	. 60	. 16	. 42	. 59	. 75	1.5	2.1
11	---	---	---	---	---	. 14	. 16	. 65	. 43	2.4	1.4	1.6
12	---	---	---	---	---	. 21	. 16	. 76	1.2	2.0	. 71	. 37
13	---	---	---	---	---	. 63	. 17	. 84	1.4	2.0	1.0	. 26
14	---	---	---	---	---	1.4	. 85	2.0	1.9	1.9	1.1	. 19
15	---	---	---	---	---	. 14	4.8	. 47	1.7	1.2	. 37	. 21
16	---	---	---	---	---	. 14	. 49	1.5	1.5	. 41	. 32	2.7
17	---	-	---	---	---	. 16	. 20	1.2	. 48	. 24	. 18	5.9
18	---	---	---	---	---	. 37	. 18	1.4	. 19	. 24	. 39	10.0
19	--	---	---	---	---	. 35	. 23	1.0	. 18	. 19	. 40	11.2
20	---	---	---	---	---	. 25	. 36	. 22	. 19	. 19	. 27	6.2
21	---	---	---	---	---	. 29	. 18	. 19	. 18	. 81	. 19	5.3
22	--	---	---	---	---	. 15	. 18	. 18	. 19	. 90	. 41	1.0
23	---	--	---	---	---	---	. 17	. 19	. 41	1.3	. 37	1.9
24	--	---	---	---	---	. 14	. 18	. 20	1.1	. 92	. 84	3.8
25	---	---	---	---	---	. 22	. 18	. 19	1.1	. 70	1.7	5.5
26	---	-	---	---	---	. 14	. 35	. 19	1.7	. 53	1.8	4.4
27	---	---	---	---	---	. 14	1.4	. 19	1.6	1.3	2.0	2.6
28	---	---	---	---	---	. 15	. 63	. 26	1.5	1.7	2.2	1.5
29	--	---	---	---	---	. 17	. 27	. 35	. 87	2.0	2.4	2.2
30	---	---	---	---	---	. 20	. 19	. 21	. 39	. 98	1.8	. 80
31	---	---	---	---	---	. 61	---	. 44	---	1.4	. 31	---
MEAN	-	-	---	---	---	---	---	. 59	. 71	. 94	. 93	2.8
MAX	---	---	--	---	---	---	---	2.0	1.9	2.4	2.4	11.2
MIN	---	---	---	---	---	---	---	. 18	. 18	. 19	. 18	. 19

291841083070800 EAST PASS SUWANNEE RIVER NEAR SUWANNEE, FL--Continued.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e2480	536	e1500	1710	1820	2000	2970	2570	2120	2380	1860	1190
2	e1680	4030	e1220	1770	2280	2050	2690	2760	2060	1970	1820	1560
3	2420	2640	e1030	1670	1860	2150	2140	2910	1680	1950	1730	1450
4	2330	2010	e1800	1700	2180	2330	3750	2630	1760	1530	1780	1720
5	2270	2300	e1320	3460	3260	2720	3780	2600	1290	1710	1660	1760
6	2860	2070	e2810	1520	2260	2690	2430	2480	1890	1360	1100	2420
7	2570	2110	2260	2320	2420	2650	2810	2470	1710	1240	2000	1720
8	2280	1950	2160	1790	2190	2190	2320	2230	1710	2350	1650	2100
9	2070	2110	2010	2020	2320	2270	4630	1850	1430	1370	1630	1810
10	2290	2210	2030	2080	1530	2220	2400	1740	1390	1490	1440	2140
11	2530	2310	2370	2450	1270	1530	2780	2030	1710	1860	1650	2370
12	2460	2890	1790	2030	1710	3220	2680	1740	1520	1470	1640	2550
13	2030	1620	1360	1670	1000	2450	2840	1930	1970	1500	1760	2570
14	2580	1560	2560	3820	1160	1880	3390	2460	1580	1510	1790	2700
15	3040	1990	1810	1460	1950	1240	2980	2940	1590	1170	1940	2690
16	2490	1910	2530	1230	2150	1790	3280	2400	1730	1540	1650	2560
17	1780	1640	1680	1360	2430	2580	3070	2050	1870	1610	1510	4700
18	1550	1300	797	1610	2260	3010	3510	1890	1750	1960	1530	2350
19	1570	1310	2000	2110	2520	1980	3180	1950	1800	1480	1520	3280
20	1870	2030	2070	2980	3490	2630	2600	1720	1540	1270	1690	2560
21	2750	2400	1950	2810	2880	2720	1870	1480	1960	1800	1690	3340
22	1840	2500	3090	1560	2670	2560	3230	1370	1370	1280	1720	3140
23	2280	e2210	2900	1890	2180	2660	2170	1720	1310	1470	1490	3190
24	2790	e2330	2400	3550	2220	2170	130	1450	1300	1300	1390	3310
25	2300	e2100	3040	2020	2190	1890	3640	1380	1180	1600	1790	2940
26	2210	e2370	1530	2690	1980	2070	2390	1450	1530	1810	1720	3570
27	2190	e2650	1640	1780	1930	279	1790	1330	1820	1820	1610	3930
28	2350	e1820	1410	2170	2550	3380	1070	1210	1460	2030	1850	3900
29	1930	e1670	1730	1040	1740	1710	3080	1840	1790	1860	1930	4000
30	1450	e2940	883	1670	---	1340	3260	2280	2290	2000	1550	3800
31	2020	-	982	2050	---	3180	---	2110	---	1760	1360	
MEAN	2234	2117	1892	2064	2152	2243	2762	2031	1670	1660	1660	2711
MAX	3040	4030	3090	3820	3490	3380	4630	2940	2290	2380	2000	4700
MIN	1450	536	797	1040	1000	279	130	1210	1180	1170	1100	1190

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

TEMPERATURE, WATER TOP (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.1	22.3	18.5	16.0	14.9	20.6	23.0	23.1	27.9	27.6	29.2	28.8
2	25.8	22.3	17.3	16.6	15.2	20.8	23.3	23.5	28.3	27.9	29.2	28.1
3	25.9	21.4	16.7	17.2	15.5	20.9	23.5	23.7	28.8	28.1	29.2	27.8
4	25.9	20.7	16.8	17.8	15.6	21.1	23.3	24.0	29.2	28.3	29.1	27.6
5	25.5	20.1	17.2	18.1	15.9	21.1	22.4	24.3	29.1	28.9	29.4	27.5
6	25.1	19.9	17.7	17.8	15.7	21.1	21.9	24.6	28.8	29.3	29.7	27.0
7	24.7	20.0	17.5	18.0	15.5	21.2	21.8	25.1	28.8	29.7	29.6	26.9
8	24.6	20.0	17.5	18.3	15.6	21.4	21.9	25.4	28.6	29.8	29.7	27.0
9	24.8	20.2	17.9	18.3	15.8	21.8	20.9	25.7	28.6	29.7	29.8	27.2
10	25.1	20.4	18.4	18.6	16.1	22.0	20.6	26.1	28.4	29.9	29.8	27.2
11	25.4	20.7	19.1	18.9	16.4	22.3	20.7	26.5	28.1	30.4	30.0	27.4
12	25.6	20.9	19.4	19.0	16.8	22.1	21.3	27.0	28.0	30.6	29.5	27.5
13	25.8	20.9	19.3	19.0	17.4	21.5	21.8	27.3	28.3	30.3	29.1	27.8
14	25.9	21.0	19.5	18.4	17.7	21.1	21.7	27.5	28.5	29.5	29.4	28.0
15	25.8	21.0	19.4	17.3	18.1	21.0	21.3	27.5	28.8	29.2	29.7	28.1
16	25.4	20.8	18.8	16.8	18.6	21.4	21.6	27.4	29.0	29.5	29.9	27.7
17	25.0	20.3	17.7	16.6	19.3	21.7	22.2	27.4	29.1	29.4	29.8	26.2
18	25.0	19.8	17.2	16.8	19.9	21.8	22.4	27.3	29.0	29.2	29.9	24.5
19	24.9	19.7	17.1	17.2	20.5	21.7	22.6	27.2	29.1	29.3	29.8	24.7
20	24.8	19.9	17.4	17.5	20.7	21.7	23.1	27.3	29.4	29.8	29.7	25.4
21	24.2	20.2	17.5	17.2	20.4	21.9	23.5	27.5	29.1	29.3	29.3	25.8
22	23.4	20.3	17.7	16.3	19.9	22.1	23.3	27.3	28.9	29.1	29.3	25.8
23	22.7	20.3	17.8	16.0	19.5	22.1	23.2	27.4	28.9	28.8	29.3	25.9
24	21.7	20.5	17.4	16.4	19.7	22.1	22.8	27.5	28.8	28.2	29.5	26.3
25	21.0	21.1	16.8	15.9	20.0	22.4	23.0	27.7	28.4	27.9	29.7	26.6
26	20.8	21.5	16.0	14.9	20.3	22.6	23.0	28.1	28.1	28.3	29.5	26.7
27	20.8	21.1	15.8	14.1	20.4	22.7	22.9	28.6	28.0	28.8	29.5	26.3
28	20.7	20.6	15.7	13.6	20.5	22.4	22.9	28.8	28.1	29.1	29.3	25.7
29	21.0	20.4	15.5	13.8	20.6	22.5	23.0	28.9	28.2	29.4	29.0	25.1
30	21.4	19.7	15.5	14.4	---	22.8	23.1	28.6	27.6	29.5	28.8	24.5
31	21.7		15.6	14.7	---	23.0	---	28.0		29.1	29.0	
MEAN	24.1	20.6	17.5	16.8	18.0	21.8	22.4	26.7	28.6	29.2	29.5	26.7
MAX	26.1	22.3	19.5	19.0	20.7	23.0	23.5	28.9	29.4	30.6	30.0	28.8
MIN	20.7	19.7	15.5	13.6	14.9	20.6	20.6	23.	27.	27.6	28.8	24.5

TEMPERATURE, WATER BOTTOM (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.1	22.4	18.5	15.9	14.8	20.6	23.0	23.0	27.8	27.6	29.2	28.9
2	25.8	22.3	17.2	16.6	15.2	20.8	23.3	23.5	28.2	27.9	29.3	28.1
3	26.0	21.4	16.6	17.2	15.4	20.9	23.5	23.7	28.8	28.1	29.2	27.8
4	25.9	20.7	16.8	17.8	15.6	21.1	23.3	23.9	29.2	28.3	29.1	27.6
5	25.6	20.1	17.2	18.1	15.9	21.1	22.4	24.3	29.1	28.9	29.4	27.5
6	25.1	19.9	17.7	17.8	15.7	21.0	21.9	24.6	28.8	29.3	29.7	27.0
7	24.7	20.0	17.5	18.0	15.5	21.2	21.8	25.1	28.8	29.8	29.6	27.1
8	24.6	20.0	17.5	18.3	15.6	21.4	21.9	25.4	28.5	29.8	29.7	27.4
9	24.8	20.2	17.9	18.3	15.8	21.8	20.9	25.7	28.5	29.7	30.1	27.4
10	25.1	20.4	18.4	18.6	16.2	22.0	20.6	26.1	28.3	29.9	29.9	27.2
11	25.4	20.7	19.1	18.9	16.4	22.3	20.7	26.5	28.1	30.4	30.0	27.4
12	25.6	20.9	19.4	19.0	16.8	22.1	21.2	27.0	27.9	30.6	29.5	27.5
13	25.8	20.9	19.3	19.0	17.4	21.4	21.8	27.3	28.3	30.3	29.1	27.8
14	25.9	21.1	19.5	18.4	17.6	21.1	21.7	27.5	28.5	29.4	29.3	28.0
15	25.8	21.4	19.4	17.3	18.0	21.0	21.3	27.5	28.8	29.1	29.6	28.2
16	25.4	21.3	18.8	16.7	18.6	21.4	21.6	27.4	29.0	29.5	29.9	27.8
17	25.1	20.9	17.8	16.6	19.2	21.6	22.2	27.4	29.1	29.3	29.8	26.2
18	25.2	19.9	17.2	16.8	19.9	21.8	22.4	27.2	29.1	29.2	29.9	24.5
19	25.4	19.6	17.1	17.2	20.5	21.7	22.6	27.2	29.1	29.3	29.8	24.7
20	24.9	19.9	17.4	17.5	20.7	21.7	23.1	27.3	29.4	29.9	29.6	25.4
21	24.2	20.2	17.4	17.2	20.4	21.9	23.5	27.5	29.1	29.3	29.3	25.9
22	23.4	20.3	17.7	16.2	19.9	22.1	23.3	27.3	28.9	29.1	29.3	25.9
23	22.7	20.3	17.8	15.9	19.5	22.1	23.2	27.4	28.9	28.8	29.3	25.9
24	21.7	20.5	17.4	16.4	19.7	22.0	22.8	27.5	28.8	28.2	29.5	26.3
25	21.0	21.1	16.8	15.9	20.0	22.3	23.0	27.7	28.4	27.9	29.7	26.6
26	20.7	21.5	16.1	14.9	20.2	22.6	22.8	28.1	28.1	28.3	29.5	26.7
27	20.8	21.1	15.8	14.1	20.4	22.7	22.8	28.5	28.0	28.8	29.5	26.3
28	20.7	20.6	15.7	13.6	20.4	22.3	22.8	28.8	28.1	29.1	29.4	25.7
29	21.0	20.5	15.5	13.5	20.2	22.4	22.9	28.9	28.2	29.4	29.0	25.1
30	21.4	19.7	15.4	14.3	---	22.8	23.1	28.6	27.6	29.5	28.8	24.5
31	21.8		15.6	14.7	---	23.0		28.0	---	29.1	29.0	
MEAN	24.1	20.7	17.5	16.8	18.0	21.7	22.4	26.6	28.6	29.2	29.5	26.7
MAX	26.1	22.4	19.5	19.0	20.7	23.0	23.5	28.9	29.4	30.6	30.1	28.9
MIN	20.7	19.6	15.4	13.5	14.8	20.6	20.6	23.0	27.6	27.6	28.8	24.5

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 29	2.5	. 24	. 32	. 23	. 53	. 13	. 92	2.3	1.4	3.0	2.3
2	. 73	1.9	. 96	. 46	. 29	. 31	. 21	. 52	2.0	1.9	2.1	1.6
3	. 50	. 19	1.7	. 58	. 61	. 33	. 54	. 56	2.3	1.6	. 96	. 53
4	. 53	. 21	1.1	. 74	1.1	. 66	1.6	. 79	1.8	3.0	. 36	. 39
5	. 84	. 26	2.2	. 22	. 29	. 17	. 12	. 86	2.4	1.8	. 29	. 41
6	. 44	. 28	1.8	. 31	. 23	. 33	. 24	1.1	. 63	1.3	. 51	. 24
7	. 25	. 49	. 22	. 72	. 41	. 21	. 23	. 57	. 63	. 88	. 41	. 94
8	. 66	. 91	. 34	. 70	. 52	. 31	. 72	. 51	. 25	. 24	. 31	. 83
9	. 70	1.5	. 47	1.8	. 28	. 35	. 12	. 39	. 28	. 28	. 59	1.8
10	. 72	. 98	1.2	1.8	. 63	. 28	. 12	. 17	. 56	. 66	1.8	1.4
11	. 64	. 84	. 67	. 23	. 50	. 54	. 11	. 16	. 49	. 70	2.3	1.4
12	. 50	. 32	. 82	. 20	. 22	. 16	. 11	. 16	. 89	. 97	. 58	1.5
13	. 48	. 24	1.8	. 25	. 53	. 15	. 11	. 18	. 57	. 74	. 58	1.4
14	. 29	. 61	. 20	. 18	. 95	. 16	. 11	. 22	1.2	2.0	. 71	1.3
15	. 18	. 68	. 24	. 20	. 44	. 46	. 11	. 19	1.9	2.0	. 79	1.1
16	. 17	. 89	. 19	. 51	. 64	. 47	. 16	. 28	1.6	3.2	1.3	2.1
17	. 47	1.4	. 20	. 70	. 57	. 23	. 15	. 75	1.7	1.6	1.3	. 13
18	. 75	2.0	. 77	. 84	. 48	. 18	. 41	. 94	1.8	. 98	. 97	1.2
19	1.5	1.3	. 60	1.1	. 71	. 20	. 13	. 70	1.1	. 98	. 46	. 11
20	1.4	1.5	. 30	1.9	. 34	. 76	. 53	. 58	1.3	1.4	. 41	. 15
21	. 33	1.6	. 62	. 21	. 18	. 20	. 83	1.0	. 33	. 46	. 26	. 47
22	. 56	1.0	1.1	1.1	. 18	. 25	. 12	. 63	. 57	. 49	. 19	. 55
23	. 64	. 76	. 37	1.9	. 20	. 18	. 42	. 24	. 49	. 29	. 41	. 13
24	. 69	. 93	. 28	1.0	. 22	. 32	2.3	. 21	. 45	. 28	1.1	. 29
25	. 49	2.0	. 21	. 22	. 29	. 63	. 17	. 19	. 31	. 22	1.5	. 56
26	. 76	2.6	. 26	. 22	. 37	. 39	. 15	. 18	. 26	. 28	1.6	. 27
27	. 92	. 31	. 32	. 27	. 19	1.7	. 15	. 18	. 68	1.0	2.6	. 14
28	. 76	. 25	. 51	. 28	. 22	. 19	. 34	. 20	1.7	1.6	2.6	. 12
29	. 24	. 58	. 35	. 53	. 35	. 16	. 17	. 22	2.5	2.8	1.6	. 11
30	. 80	. 20	. 70	. 25	---	. 21	. 15	. 27	1.6	2.8	1.7	. 11
31	. 34	---	. 47	. 23	---	. 14	---	1.2	---	3.1	2.0	---
MEAN	. 60	. 97	. 68	. 64	. 42	. 36	. 36	. 49	1.2	1.3	1.1	. 79
MAX	1.5	2.6	2.2	1.9	1.1	1.7	2.3	1.2	2.5	3.2	3.0	2.3
MIN	. 17	. 19	. 19	. 18	. 18	. 14	. 11	. 16	. 25	. 22	. 19	. 11

SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 58	4.8	. 31	1.3	. 61	1.5	. 13	1.5	2.8	1.8	3.0	2.9
2	1.2	3.0	2.2	1.2	. 79	. 80	. 22	. 69	2.4	2.4	2.3	1.9
3	. 94	. 19	2.9	1.3	1.4	. 45	. 74	. 85	2.7	1.9	1.0	. 65
4	. 95	. 24	1.8	1.4	1.6	1.1	2.0	1.1	2.2	3.3	. 35	. 46
5	1.5	. 40	3.9	. 51	. 53	. 17	. 13	1.2	2.8	2.3	. 28	. 44
6	. 78	. 30	2.7	. 33	. 25	. 44	. 27	1.3	. 72	1.7	. 61	. 36
7	. 29	. 73	. 23	1.0	. 50	. 23	. 26	. 72	. 77	1.1	. 49	5.5
8	1.0	1.8	. 72	. 99	. 64	. 37	. 87	. 60	. 53	. 24	. 62	6.9
9	1.1	2.5	. 75	2.4	. 31	. 44	. 12	. 45	. 29	. 32	1.9	6.8
10	1.3	1.6	1.8	2.8	. 76	. 30	. 12	. 16	. 64	. 83	3.0	2.0
11	1.3	1.5	. 93	. 23	. 61	. 84	. 11	. 15	. 56	. 88	2.7	1.9
12	. 90	. 59	1.2	. 20	. 22	. 16	. 11	. 16	1.2	1.3	. 71	2.1
13	. 77	. 24	2.7	. 28	. 79	. 15	. 11	. 17	. 72	. 99	. 84	2.1
14	. 44	2.3	. 20	. 18	2.3	. 33	. 11	. 21	1.4	2.3	. 82	1.9
15	. 21	4.5	. 61	. 21	1.8	. 65	. 11	. 18	2.5	2.0	1.1	1.6
16	. 18	7.3	. 20	. 77	. 89	. 60	. 17	. 28	2.0	3.7	1.6	2.8
17	1.3	10.1	. 21	1.0	. 79	. 29	. 15	. 92	2.1	1.7	1.6	. 12
18	5.2	2.9	. 88	1.1	. 73	. 18	. 56	1.2	2.2	1.3	1.1	1.6
19	8.6	1.8	1.1	1.4	1.3	. 20	. 13	. 83	1.3	1.1	. 44	. 11
20	2.4	3.0	. 34	2.6	. 45	1.5	. 76	. 69	1.5	1.3	. 41	. 25
21	. 46	2.8	. 90	. 21	. 18	. 21	1.1	1.2	. 47	. 43	. 25	1.0
22	. 86	1.6	1.7	1.6	. 18	. 26	. 13	. 63	. 81	. 45	. 18	1.5
23	1.2	1.3	. 48	2.9	. 21	. 17	. 56	. 23	. 98	. 27	. 51	. 20
24	1.0	1.8	. 34	1.5	. 23	. 37	2.6	. 20	. 50	. 26	1.5	. 47
25	. 74	3.2	. 24	. 23	. 38	. 76	. 17	. 19	. 33	. 18	1.8	. 84
26	1.4	3.9	. 33	. 25	. 82	. 59	. 59	. 18	. 28	. 31	1.9	. 29
27	1.7	. 46	. 78	. 31	1.2	2.5	. 32	. 18	. 93	1.3	3.2	. 14
28	1.4	. 39	1.3	. 32	2.9	. 19	. 54	. 19	2.0	2.0	3.2	. 12
29	. 27	2.5	. 62	1.6	2.9	. 16	. 18	. 23	3.1	2.9	2.0	. 11
30	1.4	. 19	1.4	1.1	---	. 21	. 15	. 29	2.0	3.1	2.2	. 10
31	1.2	---	1.6	. 51	---	. 15	---	1.7	---	3.3	2.5	---
MEAN	1.4	2.3	1.1	1.0	. 91	. 52	. 45	. 60	1.4	1.5	1.4	1.6
MAX	8.6	10.1	3.9	2.9	2.9	2.5	2.6	1.7	3.1	3.7	3.2	6.9
MIN	. 18	. 19	. 20	. 18	. 18	. 15	. 11	. 15	. 28	. 18	. 18	. 10

LOCATION.-- Lat. $29^{\circ} 18^{\prime} 42^{\prime \prime}$, long. $83^{\circ} 08^{\prime} 51^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{sec} .31$, T. 13S., R. 12E., Dixie County, hydrologic unit 03110205, on right bank, 1.1 mi. downstream of Demory Creek and 1.9 mi . above the mouth of Wadley Pass.
DRAINAGE AREA.--Indeterminate.
PERIOD OF RECORD.-- June 1995 to October 2000.
GAGE.--Water-stage recorder; datum of gage is 5.27 ft . below National Geodetic Vertical Datum (NGVD) of 1929; water-quality measured at three elevations, 3.02 ft . (top), 5.19 ft . (middle), and 6.54 ft . (bottom) below NGVD 1929.

REMARKS.-- Tidally-influenced site. Previous to March 1999, gage was located about 30 ft . west-northwest of present location and water temperature, salinity were measured at one undetermined elevation. Record is rated as follows: 1995: gage height--fair to poor, estimated periods--poor; water temperature, salinity--fair to poor; 1996: gage height--fair to poor, estimated periods--poor; water temperature, salinity--fair to poor; 1997: gage height, water temperature, salinity--fair to poor; estimated periods poor; 1998: gage height, water temperature, salinity--fair to poor; estimated periods poor; 1999: gage height, water temperature, salinity--previous to March 1999, fair to poor; March to September 1999, fair; estimated periods poor; 2000: elevation--good, estimated periods poor; water temperature, salinity--good.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	5.55	e5. 57	6.16
2	---	---	---	---	---	---	---	---	---	5.62	e4.47	6.09
3	--	---	-	-	---	---	-	---	---	5.77	6.75	5.82
4	---	---	---	---	---	---	--	---	--	5.57	6.03	5.68
5	---	---	---	---	-	---	---	---	-	5.45	5.97	5.63
6	---	-	---	--	--	---	--	--	---	5.32	6.03	5.82
7	---	---	---	---	---	---	---	---	---	5.45	5.87	6.38
8	--	-	-	---	-	---	---	---	---	5.65	5.91	6.41
9	---	---	--	---	---	---	--	--	--	5.71	e6.05	6.34
10	---	---	---	---	-	---	--	---	--	5.99	6.26	6.21
11	---	---	-	--	-	---	--	--	--	5.90	---	6.11
12	---	---	---	-	---	---	---	---	---	5.80	--	6.18
13	---	---	---	---	---	---	---	---	---	5.85	---	6.14
14	---	---	--	---	---	---	---	---	--	5.89	---	6.20
15	---	---	--	---	---	---	--	--	--	5.82	---	6.03
16	---	-	--	--	---	---	--	--	--	5.70	--	6.07
17	---	---	---	---	---	---	---	---	---	5.78	---	6.11
18	---	---	---	---	---	---	---	---	---	5.78	---	6.02
19	---	---	-	---	---	---	-	---	---	5.73	--	5.96
20	---	-	-	--	---	-	---	---	---	5.68	---	5.93
21	--	---	---	---	---	---	-	---	---	5.64	---	5.85
22	---	---	-	-	---	---	---	---	---	5.48	6.13	6.28
23	---	---	---	---	---	---	---	---	5.69	5.52	6.01	6.33
24	---	---	---	---	---	---	---	---	e5.78	5.62	5.91	6.16
25	--	---	--	---	--	-	-	---	e6. 23	5.81	6.85	6.19
26	--	---	---	---	---	---	---	---	e6.17	5.93	7.19	6.49
27	--	-	-	-	---	---	---	---	e5.82	e5.97	6.78	6.42
28	---	---	-	--	-	---	--	--	e5.50	e6. 39	6.45	6.16
29	--	---	-	-	---	---	---	---	e5.37	e6.15	5.81	6.14
30	---	---	-	-	-	---	-	---	5.41	e6. 20	5.36	5.83
31	---	---	---	---	---	---	---	---	---	e5.92	5.59	---
MEAN	---	---	---	---	---	---	---	---	---	5.76	---	6.10
MAX	---	---	---	---	---	---	---	---	---	6.39	---	6.49
MIN	-	---	---	---	---	---	---	---	---	5.32	---	5.63

[^8]291842083085100 WEST PASS SUWANNEE RIVER NEAR MOUTH NEAR SUWANNEE, FL--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995
DAILY MEAN VALUES

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	---	---	27.5
2	--	--	---	---	---	---	---	---	---	---	27.7	27.8
3	---	---	---	---	---	---	---	---	---	---	26.2	27.9
4	---	---	---	---	---	---	---	---	---	---	26.9	27.6
5	---	---	---	---	---	---	---	---	---	---	27.6	27.2
6	---	---	---	---	---	---	---	---	---	---	28.4	26.3
7	---	---	---	---	---	---	---	---	---	---	28.7	26.0
8	--	---	---	---	---	---	---	---	---	---	28.5	26.4
9	---	---	---	---	---	---	---	---	---	---	--	27.0
10	---	---	---	---	---	---	---	---	---	---	28.7	27.2
11	--	---	---	---	---	---	---	---	---	---	---	27.2
12	---	---	---	---	---	---	---	---	---	---	---	27.8
13	---	---	---	---	---	---	---	---	---	---	---	28.3
14	---	---	---	---	---	---	---	---	---	---	---	28.6
15	---	---	---	---	---	---	---	---	---	---	---	28.3
16	---	---	---	---	---	---	---	---	---	---	---	---
17	---	---	---	---	---	---	---	---	---	---	---	28.6
18	---	---	---	---	---	---	---	---	---	---	---	28.4
19	---	---	---	---	---	---	---	---	---	---	---	28.5
20	---	---	---	---	---	---	---	---	---	---	---	28.1
21	---	---	---	---	---	---	---	---	---	---	---	27.9
22	---	---	---	---	---	---	---	---	---	---	29.1	28.1
23	---	---	---	---	---	---	---	---	---	---	28.6	28.4
24	---	---	---	---	---	---	---	---	---	---	27.7	27.8
25	---	---	---	---	---	---	---	---	---	---	27.9	26.8
26	---	---	---	---	---	---	---	---	---	---	28.4	26.9
27	--	---	---	---	---	---	---	---	---	---	28.7	26.7
28	---	---	---	---	---	---	---	---	---	---	29.0	26.6
29	---	---	---	---	---	---	---	---	---	---	28.3	26.6
30	---	---	---	---	---	---	---	---	---	---	27.9	26.4
31	---	---	---	---	---	---	---	---	---	---	27.6	---
MEAN	---	-	---	-	--	---	---	---	---	---	---	---
MAX	---	---	---	---	---	---	--	--	--	---	---	---
MIN	--	--	---	--	---	---	-	---	---	---	---	

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DAY	ОСт	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	--	---	-	--	---	---	---	---	---	-	--	3.4
2	---	---	--	---	---	---	---	---	---	---	--	3.5
3	---	---	-	---	---	--	--	-	-	---	---	2.8
4	---	---	---	---	--	---	-	---	---	---	---	3.3
5	---	---	---	---	---	---	---	---	---	---	---	3.1
6	---	---	---	---	---	---	---	---	---	---	---	3.6
7	---	---	---	---	---	---	---	---	---	---	--	6.2
8	--	---	--	---	--	--	--	--	-	---	---	7.4
9	---	---	-	---	-	--	---	---	-	---	---	6.8
10	---	---	---	---	---	---	---	---	---	---	---	5.4
11	---	---	---	---	---	---	---	---	---	---	---	4.1
12	--	--	---	--	---	--	--	--	--	---	---	4.7
13	---	---	---	---	---	---	---	--	---	---	---	3.1
14	--	---	---	---	---	-	---	---	---	---	---	2.8
15	---	---	---	---	---	---	---	---	---	---	---	1.8
16	---	---	---	---	---	---	---	---	---	---	---	2.5
17	---	--	--	--	--	--	--	--	--	---	---	3.8
18	---	---	---	---	---	---	---	---	--	---	---	3.0
19	---	---	---	---	-	---	---	---	-	---	---	4.4
20	---	---	---	---	---	---	---	---	---	---	---	4.0
21	---	---	---	---	---	---	---	---	---	---	---	4.3
22	---	---	---	---	---	---	---	---	---	---	4.1	7.0
23	---	--	--	--	---	--	---	-	---	---	4.5	6.9
24	---	---	---	---	---	---	---	--	---	-	3.8	5.3
25	---	---	---	---	---	---	---	---	---	---	9.6	5.8
26	---	---	---	---	---	---	---	---	---	---	10.2	7.8
27	---	---	---	---	---	---	---	---	---	---	5.7	6.5
28	---	--	--	-	--	-	---	-	-	--	4.8	4.3
29	---	---	--	---	---	---	---	-	---	---	1.8	4.9
30	---	---	---	---	---	--	---	--	--	---	1.0	2.2
31	---	--	--	---	--	---	---	--	---	---	1.5	---
MEAN	-	--	---	--	---	--	---	--	-	---	--	4.5
MAX	---	---	---	---	---	---	---	---	---	---	--	7.8
MIN	---	---	---	---	---	---	---	---	---	---	---	1.8

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.89	6.14	e5.22	e6. 67	---	5.00	5.49	4.66	---	5.86	e6. 24	6.13
2	6.11		e5.33	e6. 56	---	5.26	4.56	5.08	---	5.91	6.16	e6.16
3	6.77	---	e5.48	e5.76	---	4.64	5.11	5.44	---	6.07	6.12	e6. 12
4	8.74	---	e5.46	e4.96	---	4.77	5.70	5.61	---	6.26	5.92	e5.98
5	7.46	---	e5.52	e5.36	---	5.52	5.79	5.62	---	6.76	5.87	5.97
6	6.37	---	e5.53	e5.53	---	5.97	6.06	5.72	---	6.28	5.88	6.14
7	6.08	6.24	e5.82	e5.90	---	6.12	5.70	5.66	---	5.81	5.87	6.01
8	5.67	5.22	e5.44	e4.00	---	4.28	5.78	5.67	---	5.87	e5.88	6.03
9	5.38	4.40	e5.74	e4.65	---	e3.70	5.65	5.63	---	6.06	5.87	6.20
10	5.94	5.36	e4.30	e4.94	---	3.57	4.88	e5.65	---	5.59	e6.12	6.25
11	6.02	6.18	e4.29	e5.48	---	3.32	4.96	5.58	---	5.46	6.29	6.23
12	5.68	4.41	e5. 02	e5.61	---	4.34	5.49	5.45	---	5.51	6.50	6.17
13	5.93	5.17	e5.44	e4.39	e4.47	5.11	5.87	5.23	---	5.82	6.14	6.11
14	6.34	5.17	e5.74	e5.29	5.45	5.19	5.88	5.12	---	6.05	6.04	6.09
15	5.19	4.84	e5.62	e5.37	5.66	5.47	5.80	5.35	---	5.91	e6.09	6.25
16	4.66	5.21	e5.90	e5.39	4.97	5.74	5.34	5.61	---	5.83	e5.96	6.78
17	4.86	5.49	e5.80	e5. 63	4.34	5.85	5.10	5.74	---	e5.96	5.99	6.66
18	5.45	5.41	e6.31	e6.08	5.10	6.22	5.62	5.84	---	e5.76	6.01	6.26
19	6.00	5.47	e6.97	e5.71	5.68	6.37	5.72	5.78	---	5.85	e5.74	5.86
20	6.08	e5.50	e5.67	e4.75	5.76	5.19	5.67	5.83	---	5.80	e5.79	5.83
21	5.34	e5.40	e5.31	e5.02	5.10	4.76	5.52	6.02	---	5.94	e5.69	6.31
22	5.43	e5.49	e5.42	e4.60	5.24	4.87	5.53	5.85	---	e5.94	e6.01	6.19
23	5.85	e5.99	e5. 24	e5. 24	5.25	5.08	5.68	5.84	---	6.19	e6.11	5.67
24	5.86	e6. 19	e4.89	e6.03	5.22	5.31	5.20	5.63	---	e6.44	6.06	6.04
25	6.01	e5.46	e5.21	e4.58	5.04	5.73	5.42	5.65	---	6.25	e5.99	6.18
26	e6.19	e5.54	e5.44	e5.79	5.07	5.37	5.68	5.76	5.23	5.87	5.94	6.36
27	e6. 62	e6.08	e5.58	e5.55	5.22	5.68	5.30	5.79	5.18	6.02	e6.09	6.27
28	6.35	e6.21	e5.45	---	5.31	5.83	5.23	5.83	5.14	e6.15	e6.13	6.25
29	4.83	e5.99	e4.89	---	4.75	5.40	5.84	6.03	5.19	e6. 24	e5.94	6.19
30	5.22	e4.87	e5.65	---	---	5.32	5.89	5.86	5.47	6.40	e6.00	6.03
31	5.75	---	e6.17	---	---	5.53	---	e5.42	---	e6. 50	6.06	---
MEAN	5.94	---	5.48	---	---	5.18	5.52	5.61	---	6.01	6.02	6.16
MAX	8.74	---	6.97	---	---	6.37	6.06	6.03	---	6.76	6.50	6.78
MIN	4.66	---	4.29	---	---	3.32	4.56	4.66	---	5.46	5.69	5.67

e Estimated
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.3	22.6	17.6	14.1	17.9	18.3	18.3	23.7	-	28.6	---	---
2	26.5	---	17.7	15.7	17.8	17.7	18.6	23.7	---	29.0	---	---
3	26.7	---	18.0	15.9	17.9	17.9	19.2	24.4	---	28.8		---
4	27.3	---	18.4	15.6	16.8	18.1	19.9	25.1	---	28.4	---	---
5	27.2	---	19.0	15.4	14.9	18.1	20.4	25.7	---	28.2	---	27.8
6	26.9	---	19.6	15.6	13.1	19.2	20.1	26.0	---	27.7	---	28.3
7	26.7	22.3	19.9	15.1	13.8	19.9	19.6	26.4	---	27.1	---	28.0
8	26.6	22.2	19.3	13.9	14.7	19.2	18.9	26.1	---	27.4	---	28.5
9	26.5	20.4	19.2	11.7	15.7	---	18.7	26.1	---	27.3	---	28.5
10	26.1	19.6	18.3	13.0	16.1	15.8	18.7	25.9	---	27.0	---	28.2
11	26.2	20.0	16.1	13.5	16.7	14.6	18.7	25.9	---	27.4	---	27.7
12	26.0	19.1	15.0	13.8	16.1	13.9	18.8	25.9	---	27.8	---	27.6
13	26.2	18.5	15.8	13.2	15.7	14.3	19.2	25.6	---	28.5	---	27.9
14	26.7	17.8	16.6	13.7	15.5	15.7	19.9	25.4	---	28.7	---	27.5
15	25.4	17.1	17.5	14.2	16.5	16.5	19.8	25.1	---	29.0	---	27.7
16	24.2	16.6	18.0	14.6	16.3	17.7	19.3	25.5	---	29.0	---	27.4
17	23.4	16.8	18.2	15.1	14.5	18.5	19.5	26.0	---	28.7	---	27.4
18	23.2	16.9	18.5	16.1	14.0	18.9	19.9	26.3	---	29.0	---	27.9
19	23.1	17.0	18.8	16.4	14.6	18.2	20.5	26.8	---	29.2	---	27.4
20	23.3	17.0	17.7	15.4	15.5	16.1	21.3	27.2	---	29.4	---	27.0
21	22.4	17.3	15.6	15.3	17.3	15.5	22.0	26.8	---	29.4	---	26.7
22	21.4	17.0	14.7	15.9	17.6	16.1	22.6	26.6	---	,	---	26.4
23	21.7	16.4	14.4	15.7	18.3	16.6	23.1	27.0	---	---	---	25.9
24	22.5	16.6	13.2	15.9	19.2	17.0	23.2	27.2	---	---	---	25.9
25	23.2	17.1	12.2	15.7	20.3	17.9	22.9	27.5		29.4	---	25.9
26	24.0	17.2	12.4	15.3	20.8	18.6	23.1	27.8	30.0	29.5	---	26.0
27	24.7	17.5	12.4	16.5	20.9	18.7	23.4	28.0	29.7	29.8	---	26.2
28	24.8	18.1	12.5	16.0	21.1	18.5	24.1	27.9	29.1	---	---	26.6
29	23.5	18.4	12.9	15.5	20.7	18.6	24.7	27.6	28.7	---	---	26.7
30	22.6	18.2	12.4	16.6	-	18.4	24.4	27.8	28.2	29.5	---	26.6
31	22.2	,	13.0	17.3	---	18.1		,	,		---	
MEAN	24.8	---	16.3	15.1	16.9	---	20.8	---	---	---	---	---
MAX	27.3	---	19.9	17.3	21.1	---	24.7	---	---	--	--	---
MIN	21.4	---	12.2	11.7	13.1	---	18.3	---	---	---	---	---

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.4	6.5	2.2	8.2	1.8	1.3	. 10	. 14	---	7.6	1.3	-
2	5.5	4.7	3.4	4.8	6.9	2.0	. 07	. 46	---	7.2	---	-
3	6.9	-	4.1	3.3	1.5	2.0	. 09	1.6	---	7.6	---	-
4	22.4	---	3.7	1.9	. 42	1.3	. 58	. 97	-	6.9	---	-
5	15.2	---	4.0	3.5	1.0	4.8	. 24	1.1	---	7.4	---	2.2
6	3.5	---	3.5	4.3	3.8	5.0	. 43	. 91	---	1.4	---	3.6
7	4.0	9.7	4.6	7.1	4.0	4.3	. 06	. 71	---	. 46	---	1.3
8	3.5	4.5	3.0	2.8	5.0	. 23	. 12	. 17	---	. 29	---	2.0
9	2.6	1.7	5.8	7.1	3.2	. 69	. 06	. 15	--	. 44	--	2.0
10	4.4	4.9	1.4	5.1	2.0	. 24	. 05	. 12	---	. 20	--	2.3
11	5.7	6.6	2.3	4.0	2.6	. 64	. 05	. 11	---	. 24	---	2.1
12	2.4	. 41	5.9	3.7	4.8	3.1	. 05	. 11	---	1.0	---	3.8
13	4.0	4.4	5.6	3.3	4.0	2.9	. 06	. 11	---	1.3	-	5.0
14	4.9	8.2	4.8	4.1	3.9	2.3	. 06	. 17	---	1.2	-	4.9
15	. 30	6.9	3.5	1.8	2.1	1.7	. 10	. 98	---	1.2	---	4.7
16	1.1	9.0	4.0	2.4	2.0	1.4	. 17	1.2	---	1.1	---	5.1
17	3.1	6.9	3.2	4.6	2.8	1.2	. 07	1.3	---	1.3	-	3.2
18	6.7	3.0	5.7	6.3	6.2	1.8	. 32	. 98	---	. 58	---	2.7
19	7.6	4.2	9.0	5.8	5.9	3.1	. 15	. 88	---	. 61	--	. 86
20	6.3	5.9	4.4	4.3	4.5	2.4	. 12	1.1	-	. 65	---	2.2
21	5.2	6.1	4.7	4.9	1.0	1.6	. 12	. 61	---	. 78	---	4.9
22	4.4	4.0	5.2	2.4	2.4	. 63	. 09	. 62	---	. 79	---	2.6
23	6.8	8.1	4.6	6.2	. 89	. 40	. 09	. 19	-	1.0	---	1.7
24	7.8	8.1	5.9	7.6	. 64	. 97	. 10	. 16	---	1.8	---	4.9
25	8.7	4.5	7.1	1.2	. 53	1.6	. 10	. 29	---	. 70	---	6.2
26	9.3	3.9	7.0	5.5	1.1	. 09	. 11	. 49	1.7	. 41	---	7.4
27	10.4	5.4	7.2	1.1	. 83	. 61	. 11	. 61	1.2	1.7	---	5.2
28	6.8	4.2	5.3	. 75	. 54	. 09	. 12	. 64	2.2	2.6	---	4.9
29	. 98	1.8	3.2	3.9	. 23	. 07	. 92	. 77	2.3	2.7	---	5.1
30	3.9	. 64	7.3	2.9	-	. 17	1.1	. 88	4.6	4.2	--	3.7
31	5.1	---	8.5	2.3	---	. 13	---	1.4	---	5.9	---	--
MEAN	5.9	-	4.8	4.1	2.6	1.6	. 19	. 64	---	2.3	---	-
MAX	22.4	---	9.0	8.2	6.9	5.0	1.1	1.6	---	7.6	---	--
MIN	. 30	---	1.4	. 75	. 23	. 07	. 05	. 11	---	. 20	---	---

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.86	e6. 26	6.91	5.35	5.40	5.50	4.71	6.04	e6. 62	e5.83	e5.88	e5.49
2	5.97	6.13	5.44	5.33	5.47	5.50	5.19	6.07	e6.18	e5.96	e6. 20	e5. 50
3	5.74	4.63	5.22	5.46	5.39	5.74	5.56	6.39	e6.07	e5.93	e6. 32	e5.48
4	5.21	5.29	4.71	5.59	5.63	5.47	6.00	5.48	e6.07	e6. 17	e6.43	e5.45
5	5.07	5.97	5.63	5.85	5.49	5.50	6.27	5.27	e5.76	e6. 22	e6.38	e5.31
6	5.50	6.00	5.62	5.66	5.45	5.19	6.24	6.09	e5.72	e6. 34	e6. 20	---
7	7.65	6.20	6.06	5.54	5.60	4.83	6.03	6.07	e5.67	e6. 04	e5.98	---
8	7.43	6.17	5.23	5.55	5.75	5.56	5.38	6.27	e5. 55	e5.75	e5.73	---
9	6.13	5.04	4.84	6.21	5.06	5.61	5.42	6.19	e5.69	e5.94	e5.82	---
10	5.75	5.31	5.22	5.27	5.19	5.88	5.40	5.84	e5.77	e6. 05	e5. 74	e6. 24
11	5.63	5.10	5.71	5.39	4.97	5.82	5.95	5.62	e5.70	e5.96	e5.75	6.36
12	5.36	4.82	5.82	4.81	5.29	5.64	6.51	6.13	e6.11	e5.89	e5.87	6.24
13	5.45	4.87	5.64	e4.46	5.71	6.10	5.76	---	e6. 42	e5.89	e5.89	6.19
14	5.82	4.92	5.18	e4.71	5.92	6.43	4.58	---	e6.48	e5.90	e6.08	6.20
15	6.22	4.34	5.25	e5.51	4.86	5.42	4.55	---	e6.31	e5.93	e6. 25	6.34
16	6.38	5.12	5.60	e5.89	4.03	4.62	4.97	---	e5.95	e5.88	e6. 22	e6. 45
17	6.41	5.98	6.34	e4.36	3.93	5.08	5.50	---	e6. 06	e5.94	e6. 27	---
18	6.43	6.24	5.69	e4.39	4.61	5.53	4.80	---	e6. 28	e6. 13	e6.30	---
19	5.21	6.28	4.69	e5.18	5.13	5.72	5.52	---	e6.09	e6.41	e6.38	---
20	6.29	6.32	4.11	e5.36	5.32	5.88	5.73	---	e5.79	e6. 59	---	---
21	6.43	6.37	4.29	e5.44	5.79	5.79	6.03	5.69	e5.95	e6. 35	---	---
22	6.67	5.56	4.78	e5. 67	5.72	5.58	6.30	5.65	e5.90	e6.17	---	---
23	6.82	5.71	5.39	e5.72	4.81	5.50	6.86	5.76	e5.98	e6. 30	---	---
24	6.37	6.20	5.66	e5.85	4.55	5.28	5.66	6.09	e6. 05	e6.21	e5. 57	---
25	6.64	6.68	5.05	e5.94	4.82	5.63	5.93	6.33	e5.91	e6. 08	e5.34	---
26	6.74	5.81	5.36	e5.05	5.55	5.88	6.11	e6. 21	e5.82	e5.98	e5.31	---
27	6.38	4.72	5.43	e5.40	5.86	5.60	6.61	e6. 47	e5.80	e6. 09	e5. 57	---
28	6.34	4.78	5.40	e5.60	5.62	5.81	7.22	e5.88	e5.81	e6.03	5.76	---
29	6.43	5.40	5.45	5.24	---	5.86	6.17	e5.46	e5.92	e5.92	e5.72	---
30	e6.18	6.34	5.25	5.02	---	5.76	5.84	e5.57	e5.86	e6.00	e5. 54	---
31	e5.96	---	5.27	4.92	---	5.17	---	e5.89	---	e6. 04	e5.72	---
MEAN	6.14	5.62	5.36	5.35	5.25	5.58	5.76	---	5.98	6.06	---	---
MAX	7.65	6.68	6.91	6.21	5.92	6.43	7.22	---	6.62	6.59	---	---
MIN	5.07	4.34	4.11	4.36	3.93	4.62	4.55	---	5.55	5.75	---	---

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.3	23.0	18.9	18.5	15.8	18.4	21.2	23.3	25.3	28.1	27.4	---
2	25.9	22.9	18.7	18.8	15.9	18.5	21.1	23.7	25.1	28.5	26.9	---
3	25.5	21.6	18.6	18.8	16.1	18.7	21.2	24.3	25.4	29.1	27.4	---
4	25.1	20.6	18.1	19.1	16.3	19.2	21.2	23.8	25.6	29.2	27.7	-
5	23.9	20.9	17.4	19.5	16.7	e20.1	21.7	23.3	25.4	27.9	---	e26.7
6	23.3	21.3	17.9	19.8	16.8	20.4	22.2	23.2	24.7	27.2	28.2	26.4
7	22.8	21.8	18.2	20.0	16.8	19.7	22.8	23.4	24.2	27.8	28.4	26.5
8	22.5	21.9	17.8	19.6	17.1	19.9	22.0	23.6	24.4	28.2	27.7	26.8
9	22.0	20.5	16.9	19.4	16.5	20.4	21.8	24.0	23.9	28.0	27.3	27.1
10	22.1	19.5	16.7	17.9	16.2	20.8	21.8	23.7	24.0	27.4	27.6	27.1
11	21.8	19.0	16.6	16.8	16.1	20.9	21.3	23.3	24.3	27.2	27.7	26.9
12	21.8	18.3	17.0	16.5	15.9	20.8	21.3	22.9	24.9	27.5	28.0	27.2
13	21.4	17.8	17.7	15.6	16.3	20.9	21.9	22.8	25.6	27.7	e28.4	27.6
14	21.4	18.0	17.8	15.4	17.3	20.8	21.5	23.3	26.2	28.3	e28.6	27.7
15	21.5	17.9	17.6	15.3	17.6	20.7	20.7	23.8	26.7	28.6	28.7	28.0
16	21.3	17.2	17.5	15.6	16.9	20.2	20.7	24.0	27.0	28.9	28.8	28.2
17	21.6	17.8	17.3	14.4	16.6	19.9	21.2	24.3	27.5	28.8	28.7	27.8
18	21.8	18.5	16.9	13.3	16.7	20.1	20.6	24.7	27.8	28.4	---	28.1
19	21.0	18.9	15.5	12.4	16.8	20.5	20.2	25.1	27.6	27.5	--	28.3
20	20.3	19.3	13.9	12.1	17.3	20.6	20.5	25.5	27.3	27.3	---	28.4
21	20.1	19.9	13.1	12.1	17.8	20.7	21.5	25.8	27.5	28.0	---	28.4
22	20.2	20.1	13.2	12.8	17.7	21.0	22.2	26.1	27.9	28.5	---	28.4
23	20.7	18.8	13.9	13.3	16.9	20.9	22.3	25.6	28.1	28.6	---	-
24	20.7	18.9	14.9	14.1	16.7	20.7	22.1	25.6	27.4	28.5	---	28.2
25	21.1	19.3	15.7	14.5	16.4	21.2	22.6	25.8	27.4	28.5	---	27.9
26	22.0	19.5	16.2	14.1	16.9	21.4	22.8	26.1	27.3	28.6	---	27.2
27	22.3	18.6	16.8	14.3	17.8	21.7	22.8	26.5	27.4	28.3	---	26.5
28	22.5	18.2	17.5	15.2	18.3	22.2	23.0	26.0	27.8	27.8	27.3	26.4
29	e22.7	18.3	17.8	16.1	---	21.9	22.7	25.7	28.2	27.9	---	26.2
30	22.9	18.8	18.1	16.0	---	21.7	23.0	25.5	28.3	28.1	- - -	26.5
31	22.9	---	18.2	15.6	---	22.0	-	25.5	---	28.3	--	--
MEAN	22.3	19.6	16.9	16.0	16.8	20.5	21.7	24.5	26.3	28.2	--	---
MAX	26.3	23.0	18.9	20.0	18.3	22.2	23.0	26.5	28.3	29.2	-	---
MIN	20.1	17.2	13.1	12.1	15.8	18.4	20.2	22.8	23.9	27.2	---	---

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.9	. 24	4.4	. 53	. 08	. 05	. 10	. 15	1.1	. 28	1.5	- - -
2	2.2	. 16	. 20	. 55	. 08	. 05	. 10	. 17	. 49	2.9	4.4	---
3	2.7	. 13	1.4	. 48	. 21	. 05	. 49	. 43	. 32	2.4	3.0	-
4	3.9	. 13	1.6	. 89	1.0	. 05	. 89	. 14	. 81	2.9	2.4	-
5	2.0	. 80	4.9	. 83	1.4	. 13	. 92	. 08	. 59	. 74	--	-
6	3.1	1.1	2.0	. 64	1.1	. 07	. 86	. 79	. 70	1.3	.47	. 75
7	9.8	2.2	1.7	. 82	1.3	. 05	. 54	. 42	1.3	. 43	. 29	1.3
8	12.7	2.7	1.4	1.5	2.7	. 06	. 27	. 75	. 87	. 28	. 19	2.4
9	1.2	. 21	2.4	4.5	. 15	. 25	. 46	. 34	. 96	. 48	. 16	3.0
10	. 84	. 58	2.5	3.6	. 12	. 18	. 38	. 09	. 34	. 26	. 14	3.3
11	. 29	. 39	2.6	2.5	. 10	. 06	1.6	. 10	. 11	. 21	. 16	1.9
12	. 17	. 51	2.5	. 20	. 10	. 05	1.4	. 52	. 83	. 22	. 14	2.1
13	. 14	. 95	2.4	. 16	1.5	. 11	. 14	. 10	. 34	. 23	. 18	2.6
14	. 14	. 84	. 60	. 15	. 24	. 07	. 14	. 11	. 32	1.0	---	3.8
15	. 81	1.3	1.4	. 75	. 09	. 07	. 14	. 12	. 98	1.5	. 50	5.7
16	1.1	2.4	2.0	. 73	. 10	. 08	. 13	. 12	. 80	. 45	. 61	6.9
17	1.2	4.7	4.0	. 11	. 10	. 09	. 45	. 13	. 27	. 95	1.7	6.3
18	1.8	5.9	. 87	. 10	. 10	. 09	. 94	. 14	. 47	2.5	---	6.2
19	. 07	4.2	. 20	. 73	. 10	. 09	3.1	. 36	. 65	3.5	--	4.6
20	1.1	2.8	. 71	. 87	. 21	. 10	3.6	. 44	. 58	3.8	---	3.9
21	. 70	3.2	1.1	. 34	. 38	. 10	1.5	. 85	1.2	2.6	---	2.9
22	1.0	1.4	1.6	. 33	. 25	. 11	2.0	. 52	1.3	2.9	---	2.0
23	1.1	1.6	3.8	. 92	. 06	. 12	1.6	1.4	1.6	3.9	---	2.5
24	. 15	5.1	3.6	. 69	. 05	. 10	. 32	2.0	. 76	1.5	--	2.9
25	1.9	6.5	1.7	1.2	. 05	. 29	1.2	1.2	. 51	. 57	---	1.6
26	2.1	3.2	. 89	. 11	. 05	. 14	. 83	. 71	. 21	. 63	---	2.5
27	. 99	1.4	2.6	. 11	. 05	. 10	. 42	. 55	. 21	. 99	---	1.8
28	1.1	. 89	1.4	. 12	. 05	. 16	. 79	. 17	. 20	. 28	2.1	1.3
29	. 62	1.3	. 93	. 11	---	. 12	. 13	. 52	. 29	. 33	---	1.3
30	. 73	4.4	. 29	. 10	---	. 10	. 13	1.2	. 41	. 49	--	2.2
31	. 43	---	. 17	. 09	---	. 10	---	1.2	---	1.1	---	--
MEAN	1.9	2.0	1.9	. 80	. 42	. 10	. 85	. 51	. 65	1.3	---	-
MAX	12.7	6.5	4.9	4.5	2.7	. 29	3.6	2.0	1.6	3.9	--	--
MIN	. 07	. 13	. 17	. 09	. 05	. 05	. 10	. 08	. 11	. 21	---	---

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	5.76	---	---	---	6.19	5.82	5.51	5.57	5.38	5.86
2	---	---	5.62	---	---	---	5.99	5.58	5.49	5.30	5.24	6.17
3	---	---	5.77	---	---	e5.97	6.08	5.46	5.31	5.05	5.37	8.35
4	---		6.09		---	e5.68	6.15	5.75	5.49	5.02	5.53	6.08
5	---	---	5.28	---	---	---	5.43	5.53	5.60	5.06	5.61	5.85
6	---	---	5.06	---	---	---	5.50	5.43	5.66	5.39	5.63	5.98
7	---	---	5.04	---	---	---	5.90	e5.88	5.19	5.58	5.89	6.06
8	---	---	5.78	---	---	---	6.39	6.36	5.16	5.54	5.85	6.28
9	---	---	6.13	---	---	---	6.58	5.89	5.61	5.72	5.59	6.24
10	---	---	6.21	---	---	---	5.57	6.47	5.56	5.79	5.59	5.83
11	---	---	5.71	---	---	---	4.72	5.72	5.48	5.63	5.78	6.00
12	---	---	5.16	---	6.20	---	5.07	5.48	e5.59	5.37	5.76	5.98
13	---	---	5.52	---	---	---	5.69	5.46	e5.74	5.41	5.57	6.05
14	---	---	5.12	---	---	---	6.12	5.56	5.70	5.55	5.44	5.95
15	---	---	4.89	---	---	---	6.05	5.62	6.05	5.71	5.57	5.97
16	---	---	4.59	---	---	---	6.23	5.66	5.93	5.68	5.52	6.15
17	---	---	5.24	---	---	---	6.18	5.90	5.61	5.68	5.59	6.65
18	---	---	5.33	---	---	---	5.74	5.84	5.39	5.56	5.58	6.60
19	---	---	5.35	---	---	---	5.95	5.54	5.34	5.44	5.68	6.64
20	---	---	5.34	---	---	---	5.35	5.36	5.38	5.56	5.72	6.48
21	---	---	5.77	---	---	---	5.33	5.30	5.39	5.52	5.63	6.45
22	---	---	5.99	---	---	---	5.18	5.31	5.45	5.69	5.83	6.21
23	---	---	5.73	---	---	---	5.11	5.58	5.47	5.83	5.82	5.97
24	---	---	6.33	---	---	---	5.03	5.68	5.69	5.67	5.88	5.40
25	---	---	5.97	---	---	5.74	5.31	5.75	5.65	5.65	5.66	5.06
26	---	5.53	5.65	---		5.83	5.71	5.88	5.45	5.53	5.91	6.36
27	---	5.64	5.85	---	---	6.04	5.92	6.07	5.50	5.59	6.09	e6. 85
28	---	6.01	5.12	---	---	6.19	5.86	5.87	5.48	5.62	5.98	6.66
29	---	6.33	---	---	---	6.19	5.78	5.75	5.23	5.54	6.05	6.88
30	---	6.55	---	---	---	6.13	6.06	5.49	5.62	5.53	5.87	7.93
31	---	-	---	---	---	e6.18	-	5.44	---	5.58	5.98	---
MEAN	---	---	---	---	---	---	5.74	5.69	5.52	5.53	5.70	6.30
MAX	---	---	---	---	---	---	6.58	6.47	6.05	5.83	6.09	8.35
MIN	---	---	---	---	---	---	4.72	5.30	5.16	5.02	5.24	5.06

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	16.3	12.3	13.5	---	20.0	21.1	25.7	28.3	27.9	28.7
2			16.4	11.9	13.8	---	20.6	21.4	25.9	28.3	27.4	27.4
3	---	---	16.7	12.2	14.3	---	20.9	21.7	26.2	28.5	27.3	26.8
4	---	---	17.0	12.5	13.9	---	21.2	21.6	26.9	28.6	27.0	26.7
5	---	---	16.6	13.0	12.7	---	20.6	21.6	27.4	28.6	27.1	27.1
6	---	---	15.9	13.3	12.4	---	20.3	22.0	27.4	28.7	27.5	27.5
7	---	---	15.2	13.8	12.2	---	20.4	22.6	27.1	28.7	27.5	27.2
8	---	---	14.7	14.6	12.3	---	20.8	23.5	26.8	29.0	27.9	27.4
9	---	---	15.0	14.5	12.4	---	21.0	23.7	26.9	29.0	28.1	27.3
10	---	---	15.8	e14.2	12.5	---	20.5	23.9	27.3	28.6	28.6	25.9
11	---	---	16.0	14.1	12.9	---	19.8	23.6	27.6	28.9	29.1	25.6
12	---	---	14.9	14.4	13.1	---	19.5	23.9	---	29.1	29.0	25.5
13	---	---	13.9	14.7	---	---	19.4	24.1	27.8	28.8	28.7	25.7
14	---	---	13.6	15.2	---	---	19.5	24.4	27.7	28.2	28.6	26.0
15	---	---	13.2	15.6	---	---	19.9	24.7	27.7	27.8	28.8	26.1
16	---	---	13.1	15.6	---	---	20.1	24.7	27.9	27.4	28.7	26.2
17	---	---	13.4	14.9	---	---	20.5	24.7	28.1	27.6	28.4	26.2
18	---	---	13.5	14.7	---	---	20.7	25.0	28.3	27.8	28.3	26.0
19	---	---	13.4	14.9	---	---	21.0	25.1	28.5	28.1	27.8	26.3
20	---	---	13.2	14.7	---	---	20.6	25.1	28.4	28.1	27.8	26.4
21	---	---	12.9	14.3	---	---	20.8	25.3	28.4	27.9	27.7	26.3
22	---	---	13.1	14.7	---	---	20.7	25.5	28.4	27.7	27.8	26.4
23	---	---	13.3	15.2	---	---	20.3	25.6	28.4	28.2	28.1	26.4
24	---	---	13.6	15.2	---	---	20.0	25.8	28.2	28.7	28.2	26.0
25	---	---	14.2	14.4	---	16.2	20.1	26.0	27.9	28.8	28.3	25.9
26	---	---	14.0	13.6	---	16.8	20.4	26.2	27.7	28.7	28.4	26.5
27	---	15.0	14.2	14.1	---	17.4	20.6	25.7	28.0	28.6	28.5	e26.8
28	---	15.5	13.5	14.2	---	18.4	20.7	25.3	27.9	28.5	28.7	26.6
29	---	16.2	12.9	14.0	---	18.9	20.7	25.6	28.0	28.2	29.1	27.0
30	---	16.8	12.7	13.9	---	19.1	20.8	25.4	28.2	28.0	29.1	27.0
31	---	---	12.9	13.6	---	19.9	---	25.2	---	27.8	29.2	---
MEAN	---	---	14.4	14.1	---	---	20.4	24.2	---	28.4	28.2	26.6
MAX	---	---	17.0	15.6	---	---	21.2	26.2	-	29.1	29.2	28.7
MIN	---	---	12.7	11.9	---	---	19.4	21.1	---	27.4	27.0	25.5

e Estimated

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	. 41	. 04	. 04	. 04	. 03	. 11	. 18	. 25	. 22	1.6
2	--	-	. 07	. 04	. 13	. 04	. 03	. 12	. 16	. 18	. 27	3.3
3	-	---	. 07	. 04	. 04	. 04	. 04	. 12	. 16	. 17	1.8	15.5
4	---	---	. 13	. 04	. 04	. 03	. 04	. 12	. 16	2.7	1.5	3.6
5	---	---	. 07	. 03	. 04	. 03	. 05	. 12	. 19	3.2	1.4	2.2
6	--	-	. 07	. 03	. 04	. 03	. 05	. 13	. 20	2.8	1.4	4.3
7	--	-	. 07	. 03	. 04	. 03	. 06	. 13	. 19	1.6	2.0	3.4
8	---	-	. 07	. 03	. 04	. 03	. 07	. 13	. 50	1.1	2.1	4.4
9	-	---	. 06	. 03	. 04	. 03	. 07	. 13	1.2	2.2	1.9	3.5
10	--	-	. 06	. 04	. 04	. 03	. 08	. 16	. 42	1.6	2.3	. 68
11	--	-	. 06	. 04	. 03	. 03	. 08	. 14	. 54	1.2	2.2	1.5
12	---	---	. 06	. 04	. 03	. 03	. 08	. 14	---	1.3	1.2	1.5
13	---	---	. 05	. 04	. 03	. 03	. 08	. 14	1.1	1.1	. 54	1.8
14	---	---	. 05	. 05	. 03	. 03	. 09	. 14	. 67	1.3	. 24	1.6
15	---	---	. 05	. 05	. 03	. 04	. 09	. 14	. 59	. 99	. 50	1.4
16	---	---	. 06	. 05	. 03	. 04	. 09	. 15	. 23	. 29	. 19	2.6
17	---	---	. 06	. 05	. 03	. 04	. 09	. 14	. 19	. 22	. 18	3.6
18	---	---	. 06	. 05	. 03	. 04	. 09	. 13	. 19	. 21	. 36	2.8
19	---	---	. 06	. 05	. 03	. 04	. 10	. 13	. 25	. 19	1.1	2.8
20	---	-	. 05	. 05	. 03	. 04	. 10	. 13	. 74	. 23	2.0	2.1
21	---	---	. 05	. 05	. 03	. 04	. 10	. 13	. 65	. 61	1.2	1.0
22	-	---	. 05	. 05	. 04	. 04	. 10	. 15	. 89	1.3	2.6	. 55
23	-	---	. 04	. 05	. 04	. 04	. 10	. 25	1.2	1.9	1.9	. 56
24	--	---	. 04	. 05	. 04	. 04	. 10	. 40	2.2	1.7	2.4	. 18
25	---	---	. 04	. 05	. 04	. 03	. 10	. 53	1.3	1.6	1.4	. 17
26	---	---	. 04	. 05	. 04	. 03	. 10	1.0	. 94	1.3	1.5	2.6
27	---	. 05	. 05	. 05	. 04	. 03	. 10	. 98	1.0	. 78	1.6	--
28	-	. 09	. 04	. 05	. 04	. 03	. 11	. 67	. 61	. 94	. 86	1.7
29	-	. 92	. 04	. 05	---	. 03	. 11	. 40	. 24	. 56	1.9	2.9
30	-	. 75	. 05	. 05	---	. 03	. 11	. 18	. 24	. 31	1.3	13.2
31	---	---	. 04	. 04	---	. 03	---	. 16	---	. 21	2.2	---
MEAN	---	---	. 07	. 04	. 04	. 03	. 08	. 24	---	1.1	1.4	--
MAX	-	-	. 41	. 05	. 13	. 04	. 11	1.0	---	3.2	2.6	--
MIN	---	---	. 04	. 03	. 03	. 03	. 03	. 11	---	. 17	. 18	---

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.50	6.04	5.21	e5. 25	6.04	5.64	6.10	5.03	6.00	6.10	6.18	6.08
2	5.93	6.28	5.17	6.26	6.09	5.81	5.64	5.35	6.02	5.82	6.13	e5.92
3	6.09	6.63	5.50	5.68	5.93	6.36	5.59	5.77	---	5.78	6.07	6.01
4	6.09	6.05	5.61	e4.68	5.81	4.94	5.75	6.13	---	5.87	5.90	6.19
5	6.14	4.91	5.58	e4.24	5.41	5.42	5.62	6.65	---	5.94	6.22	6.46
6	6.15	5.00	5.65	4.63	5.42	5.77	5.59	6.61	---	5.92	6.47	e6. 66
7	6.37	5.27	e5.83	5.18	5.84	5.32	5.68	6.51	---	6.05	6.54	e6. 42
8	6.28	5.50	5.72	5.52	5.87	4.78	5.65	6.24	---	6.18	6.35	e6. 32
9	6.19	5.86	5.35	5.69	5.75	6.28	6.10	5.97	---	6.21	6.40	e6. 29
10	5.86	6.19	5.08	4.44	5.52	5.75	6.07	5.94	---	6.08	6.52	e6. 21
11	5.89	6.01	4.99	4.35	5.56	5.31	5.98	5.96	---	6.11	6.53	e6.21
12	5.65	5.39	5.46	5.04	5.65	5.25	5.58	5.93	---	6.18	6.08	e5.96
13	5.68	5.51	6.01	5.59	4.50	e5.82	5.24	6.15	---	6.27	5.99	e5.73
14	5.98	5.89	4.78	5.75	4.41	6.94	5.98	6.50	---	6.19	6.26	e5.16
15	5.95	5.89	4.65	5.58	5.06	e5.35	7.30	5.86	---	6.17	6.35	e5.30
16	5.46	5.93	e4.79	e5. 29	e5.76	4.93	5.98	5.88	---	6.12	6.23	e6.16
17	5.54	5.74	e5.11	e5.61	6.31	5.43	5.72	5.82	6.37	6.04	5.91	e6. 05
18	5.99	5.56	5.00	5.80	6.52	5.67	5.09	5.99	5.76	6.07	6.16	e6.40
19	6.09	5.51	5.75	5.51	6.29	5.79	5.31	6.16	5.46	5.91	6.22	e7.19
20	5.93	5.59	5.52	5.52	5.46	5.83	5.55	6.06	5.66	e5.80	6.34	e7.36
21	5.84	5.45	5.60	5.70	5.47	6.11	5.58	5.89	5.77	5.66	6.15	e6. 68
22	5.17	5.03	5.65	6.15	4.62	5.42	5.97	5.87	5.57	5.65	6.13	e5.85
23	4.47	5.43	5.45	6.40	5.49	5.52	5.69	5.86	5.69	5.84	6.21	e5.88
24	4.93	5.34	5.66	5.49	5.49	5.47	5.53	6.09	5.81	6.18	6.24	e6. 23
25	5.31	5.49	5.37	4.69	5.52	5.70	5.50	5.90	5.84	6.17	6.20	e6. 52
26	5.64	5.24	5.19	4.98	5.57	5.43	5.78	5.86	5.91	6.01	6.13	e6. 60
27	5.70	5.07	5.01	5.32	5.71	4.93	6.35	5.78	6.17	6.05	6.14	e6. 62
28	6.08	5.08	5.45	5.61	6.34	5.18	6.30	5.76	6.14	6.16	6.13	e6.38
29	6.12	5.31	6.02	5.69	---	5.36	6.07	5.73	6.26	6.30	6.21	e6. 54
30	6.05	5.51	5.19	5.66	---	5.46	5.50	5.70	6.21	6.21	6.29	e6. 28
31	6.00	---	5.26	5.46	---	5.92	---	5.92	--	6.28	5.90	---
MEAN	5.84	5.59	5.37	5.38	5.62	5.58	5.79	5.96	---	6.04	6.21	6.26
MAX	6.50	6.63	6.02	6.40	6.52	6.94	7.30	6.65	---	6.30	6.54	7.36
MIN	4.47	4.91	4.65	4.24	4.41	4.78	5.09	5.03	---	5.65	5.90	5.16

TEMPERATURE, WATER TOP(DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	27.2	31.0	e29.3
2	---	---	---	---	---	---	---	---	---	27.2	30.7	29.2
3	---	---	---	---	---	---	---	---	---	27.2	29.8	29.3
4	---	---	---	---	---	---	---	---	---	27.2	29.5	29.3
5	---	---	---	---	- - -	-- -	---	---	---	27.7	29.8	29.3
6	---	---	---	---	--	---	---	---	---	28.2	30.0	29.2
7	---	---	---	---	---	---	---	---	---	28.4	29.4	28.9
8	---	---	---	---	---	---	---	---	---	29.0	28.7	28.7
9	---	---	---	---	---	---	---	---	---	29.2	28.0	29.0
10	---	---	---	---	---	---	--	--	- -	28.8	28.1	28.7
11	-	- -	--	---	--	--	--	---	---	28.9	28.4	28.8
12	---	--	---	---	--	--	--	---	---	29.1	29.0	28.5
13	---	---	---	---	---	---	---	---	---	29.1	29.8	28.1
14	-- -	---	---	---	---	---	---	---	---	29.3	30.0	28.0
15	---	---	---	---	---	--	---	---	---	---	28.7	27.5
16	--	---	---	---	---	---	---	---	---	---	28.8	27.4
17	---	---	---	---	---	---	---	---	---	---	29.1	27.4
18	---	---	---	---	---	---	---	---	---	---	29.3	27.2
19	---	---	---	---	---	---	---	---	27.6	---	29.4	27.2
20	---	-	---	---	---	- - -	---	---	27.7	---	29.0	27.0
21	--	---	---	---	---	---	---	---	27.7	30.0	28.4	26.6
22	---	---	---	---	---	---	---	---	27.8	30.0	28.8	25.4
23	---	---	---	---	---	---	---	---	28.1	29.9	28.7	24.7
24	---	---	---	---	---	---	---	---	28.0	30.0	28.8	24.6
25	---	---	---	---	---	-	---	---	27.9	30.0	29.2	25.3
26	---	---	---	---	---	---	---	---	27.9	30.3	29.7	25.7
27	---	---	---	---	---	---	---	---	27.8	30.4	30.1	25.9
28	---	---	---	---	---	---	---	---	27.5	30.6	30.2	26.7
29	---	---	--	---	---	---	---	---	27.2	30.5	30.3	27.5
30	---	---	---	---	---	---	---	---	27.1	30.5	30.4	27.3
31	---	---	---	---	---	---	---	---	---	30.9	29.9	---
MEAN	---	---	---	---	---	---	---	---	---	---	29.4	27.6
MAX	---	---	---	---	---	---	---	---	---	---	31.0	29.3
MIN	---	---	---	---	---	---	---	---	---	---	28.0	24.6

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.2	22.2	20.7	e16.6	19.4	18.3	22.1	22.0	27.0	27.0	31.1	29.4
2	26.2	22.4	20.6	17.1	19.7	18.6	23.1	21.8	27.3	27.0	30.9	29.3
3	26.3	22.4	21.1	17.5	19.9	18.6	23.9	22.5	---	26.9	29.9	29.5
4	26.3	21.7	21.6	e16.4	20.2	18.0	24.2	23.0	---	27.0	29.6	29.5
5	26.5	21.0	21.9	15.5	19.8	17.8	24.7	23.3	---	27.5	30.0	29.4
6	26.6	20.5	22.0	14.4	19.4	18.2	25.1	24.0	---	28.0	30.2	29.3
7	26.7	20.1	e22.1	14.6	19.3	19.0	25.3	24.2	---	28.2	29.5	29.0
8	26.6	20.1	22.0	15.2	19.5	18.6	25.5	24.2	---	28.8	28.8	28.8
9	26.1	20.4	21.9	15.6	19.7	17.6	25.3	25.0	---	29.0	28.1	29.1
10	25.5	20.7	21.8	15.6	20.0	18.6	25.2	25.4	---	28.6	28.2	28.8
11	25.1	21.2	21.5	15.0	20.4	18.8	25.4	25.6	---	28.7	28.5	28.9
12	24.8	21.7	21.3	15.1	20.6	19.0	25.4	25.6	---	28.9	29.0	28.6
13	24.8	22.0	21.5	15.6	19.6	e18.7	24.3	25.9	---	28.9	29.9	28.2
14	24.8	22.3	20.5	16.3	18.2	18.9	24.0	26.1	---	29.0	30.1	28.1
15	24.5	22.3	19.4	17.1	17.3	e18.2	24.1	25.7	---	29.0	28.8	27.6
16	24.0	22.1	18.3	17.4	e17.3	18.2	23.6	25.7	---	29.3	28.9	27.5
17	23.8	22.4	e17.6	17.9	17.6	18.3	21.9	25.8	28.1	29.3	29.2	27.7
18	23.8	22.5	16.8	18.5	18.3	19.1	21.5	25.9	27.7	29.1	29.4	27.5
19	23.7	22.7	16.8	18.7	18.9	19.8	21.4	26.9	27.4	29.2	29.5	27.3
20	23.8	23.0	17.7	18.7	18.6	20.2	21.6	27.0	27.4	e29.6	29.1	27.1
21	23.8	22.9	18.7	19.4	17.9	20.3	22.2	26.9	27.5	30.3	28.5	26.7
22	23.4	21.9	19.5	19.8	17.3	20.3	22.6	26.9	27.5	30.3	28.9	25.5
23	22.0	21.8	20.2	20.1	e16.4	20.4	23.5	26.9	27.8	30.1	28.8	24.7
24	21.4	22.2	20.9	19.7	16.9	20.9	24.4	26.8	27.7	30.1	28.9	24.7
25	21.5	22.3	21.0	19.3	16.8	21.1	25.2	26.9	27.6	30.1	29.3	25.4
26	21.5	22.2	19.9	19.0	17.2	21.1	25.4	27.2	27.6	30.3	29.8	25.8
27	21.7	21.9	18.5	19.1	17.8	20.8	26.0	27.4	27.6	30.5	30.2	26.0
28	22.1	21.4	17.9	19.2	18.4	20.6	26.1	27.8	27.2	30.6	30.3	26.8
29	22.1	21.1	17.8	19.4	---	21.0	25.8	27.9	26.9	30.5	30.5	27.6
30	21.9	20.8	17.3	19.7	---	21.4	24.2	27.4	26.8	30.6	30.6	27.5
31	22.0	---	16.4	19.8	---	21.4	---	26.9	---	31.0	30.0	---
MEAN	24.2	21.7	19.8	17.5	18.7	19.4	24.1	25.6	---	29.1	29.5	27.7
MAX	26.7	23.0	22.1	20.1	20.6	21.4	26.1	27.9	---	31.0	31.1	29.5
MIN	21.4	20.1	16.4	14.4	16.4	17.6	21.4	21.8	--	26.9	28.1	24.7

TEMPERATURE, WATER BOTTOM (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	27.3	31.1	e29.4
2	---	---	---	---	---	---	---	---	---	27.2	31.1	29.4
3	---	---	---	---	---	---	---	---		27.2	29.8	29.6
4	---	---	---	---	---	---	---	---	---	27.3	29.6	29.6
5	---	---	---	---	---	---	---	---	---	27.8	30.0	29.5
6	---	---	---	---	---	---	---	---	---	28.3	30.3	29.2
7	---	---	---	---	---	---	---	---	---	28.5	29.5	29.0
8	---	---	---	---	---	---	---	---	---	29.1	28.8	28.7
9	---	---	---	---	---	---	---	---	---	29.3	28.0	29.1
10	---	---	---	---	---	---	---	---	---	28.9	28.2	28.8
11	--	--	--	---	---	---	--	---	--	28.9	28.4	28.8
12	---	---	---	---	---	---	---	---	---	29.2	28.9	28.6
13	---	---	---	---	---	---	---	---	---	29.1	29.8	28.2
14	---	---	---	---	---	---	---	---	---	29.3	30.1	28.1
15	---	---	---	---	---	---	---	---	---	---	28.8	27.5
16	---	---	---	---	---	---	---	---	---	---	28.9	27.5
17	---	---	---	---	---	---	---	---	28.4	---	29.1	27.8
18	---	---	---	---	---	---	---	---	28.0	---	29.3	27.5
19	---	---	---	---	---	---	---	---	27.7	---	29.4	27.3
20	---	---	---	---	---	---	---	---	27.6	-	29.1	27.1
21	---	---	---	---	---	---	---	---	27.8	30.6	28.4	26.7
22	---	---	---	---	---	---	---	---	27.8	30.8	28.9	25.4
23	---	---	---	---	---	---	---	---	28.1	30.5	28.7	24.6
24	---	---	---	---	---	---	---	---	28.0	30.1	28.8	24.6
25	---	---	---	---	---	---	---	---	27.9	30.0	29.3	25.4
26	---	---	---	---	---	---	---	---	27.9	30.2	29.8	25.8
27	-	---	---	---	---	---	---	---	27.9	30.4	30.2	25.9
28	--	---	---	---	---	---	---	---	27.5	30.6	30.3	26.7
29	---	---	---	---	---	---	---	---	27.2	30.4	30.5	27.6
30	---	---	---	---	---	---	---	---	27.1	30.6	30.6	27.6
31	---	---	---	---	---	---	---	---	---	30.9	e29.9	---
MEAN	---	---	---	---	---	---	---	---	---	---	29.5	27.7
MAX	---	---	---	---	---	---	---	---	---	---	31.1	29.6
MIN	---	---	---	---	---	---	---	---	---	---	28.0	24.6

SALINITY TOP (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	--	---	---	---	---	---	---	---	1.9	3.1	3.3
2	---	---	---	---	---	---	---	---	---	1.2	2.9	1.8
3	---	---	---	---	---	---	---	---	---	1.3	1.9	3.1
4	--	---	---	---	---	---	---	---	---	1.1	1.0	4.7
5	---	---	---	---	---	---	---	---	---	. 69	3.9	6.6
6	--	---	---	---	---	---	---	---	---	. 73	3.3	7.8
7	---	---	---	---	---	---	---	---	---	1.7	3.3	4.8
8	---	---	---	---	---	---	---	---	-	2.6	2.5	4.1
9	--	---	-	---	---	---	---	-	---	2.9	2.9	5.8
10	---	---	---	---	---	---	---	---	---	2.0	4.5	5.6
11	--	---	---	---	---	---	---	---	---	3.8	5.1	5.4
12	---	---	---	---	---	---	---	---	---	5.3	3.1	3.3
13	---	---	---	---	---	---	---	---	---	6.0	2.6	2.0
14	--	---	---	---	---	---	---	---	---	4.5	3.9	. 84
15	---	---	---	---	---	---	---	---	---	3.6	2.8	5.5
16	--	---	---	---	---	---	---	---	---	2.6	1.7	8.3
17	---	---	---	---	---	---	---	---	---	1.4	. 50	4.1
18	---	---	---	---	---	---	---	---	---	1.2	1.4	7.7
19	--	---	---	---	---	---	---	---	. 82	. 38	1.2	12.2
20	--	--	---	---	---	---	---	---	1.0	e. 56	1.2	9.3
21	--	---	---	---	---	---	---	---	. 85	. 82	. 87	6.9
22	---	---	---	---	---	---	---	---	. 54	1.5	. 63	4.5
23	--	---	---	---	---	---	---	---	1.0	2.4	1.1	5.1
24	--	--	---	---	---	---	---	---	1.7	2.0	2.0	8.4
25	---	---	---	---	---	---	---	---	2.3	2.7	3.2	11.0
26	---	---	---	---	---	---	---	---	3.0	2.5	3.9	9.7
27	---	-	---	---	---	---	---	---	3.3	3.6	5.0	7.4
28	---	---	---	--	--	---	---	--	3.1	4.4	5.6	5.4
29	---	--	---	---	---	---	---	---	3.5	5.6	6.7	5.8
30	-	-	---	---	---	---	---	---	2.4	5.1	6.3	4.1
31	---	---	---	---	---	---	---	---	---	4.8	1.9	---
MEAN	---	---	---	---	---	---	---	---	---	2.6	2.9	5.8
MAX	---	---	---	---	---	---	---	---	---	6.0	6.7	12.2
MIN	---	---	---	---	---	---	---	---	---	. 38	. 50	. 84

SALINITY MIDDLE (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 30	. 68	1.0	e2. 6	1.3	. 97	2.0	2.3	2.5	---	3.6	3.7
2	. 20	1.8	1.1	6.1	1.8	. 79	. 41	3.7	2.3	---	4.1	1.9
3	1.3	2.6	3.5	2.5	. 86	1.9	. 77	4.0	---	---	1.9	3.4
4	. 99	1.2	3.5	e1.7	. 27	. 23	. 73	3.0	---	-	1.2	5.1
5	1.3	. 17	2.8	1.0	. 20	. 84	. 86	4.1	--	---	4.8	6.6
6	1.2	. 19	2.4	2.0	. 24	. 21	. 95	2.1	---	---	4.0	7.4
7	. 62	. 20	e2. 8	2.4	. 13	. 15	. 69	1.9	--	---	3.6	4.5
8	. 10	. 75	1.5	2.0	. 11	. 26	. 22	. 73	---	---	2.8	3.8
9	. 07	2.1	. 21	. 36	. 10	1.8	. 41	1.2	---	---	3.2	5.3
10	. 05	. 65	. 20	. 19	. 10	. 16	. 23	1.5	--	---	4.7	5.2
11	. 05	. 16	. 20	. 83	. 43	. 14	. 62	2.1	---	---	5.3	5.2
12	. 05	. 16	1.4	1.7	. 43	. 57	. 77	3.8	-	---	3.5	3.5
13	. 05	. 54	1.9	2.7	. 10	e2.1	1.5	6.3	---	-	2.9	2.3
14	. 05	. 82	. 51	3.3	. 10	5.9	3.6	8.2	---	-	4.4	1.1
15	. 06	. 47	1.1	2.8	. 31	e. 83	8.8	3.8	--	---	3.2	6.7
16	. 07	. 38	2.8	1.4	e1. 8	. 20	2.7	4.3	---	--	2.0	9.4
17	. 07	1.1	e3.4	3.5	4.2	1.1	1.1	4.1	---	-	. 62	6.4
18	. 09	. 61	3.8	2.8	3.3	2.4	1.1	5.1	--	---	1.6	9.1
19	. 10	. 98	3.6	1.8	1.3	2.8	1.9	3.9	- - -	- - -	1.4	12.2
20	. 10	2.0	2.1	2.2	. 25	1.6	2.0	1.7	---	---	1.6	9.0
21	. 11	1.7	2.8	2.0	. 61	2.7	. 93	1.5	---	2.7	1.1	7.6
22	. 11	. 19	2.5	2.7	. 15	. 74	. 98	. 70	--	4.1	. 90	4.8
23	. 11	. 90	1.4	2.4	2.5	. 68	. 50	1.1	---	4.2	1.4	5.0
24	. 11	. 54	2.5	. 35	. 98	. 95	. 64	1.9	---	2.9	2.2	7.9
25	. 12	1.1	. 83	. 50	1.1	1.2	. 83	2.2	--	3.2	3.5	10.2
26	. 12	. 57	. 38	. 98	. 74	. 82	1.9	1.1	---	2.9	4.2	8.9
27	. 13	. 26	1.3	1.9	. 90	. 27	5.8	1.7	---	4.2	5.5	6.8
28	2.2	. 49	2.6	2.6	2.4	. 96	4.1	1.8	---	4.9	6.1	5.0
29	1.4	1.2	4.3	2.5	---	1.6	2.5	1.6	---	6.2	7.4	5.3
30	. 24	1.6	2.5	2.5	---	1.8	1.8	1.6	---	5.8	7.0	4.1
31	. 18	---	2.7	1.6	--	1.8	---	2.5	---	5.4	2.4	-
MEAN	. 38	. 87	2.1	2.1	. 95	1.2	1.7	2.8	--	---	3.3	5.9
MAX	2.2	2.6	4.3	6.1	4.2	5.9	8.8	8.2	-	---	7.4	12.2
MIN	. 05	. 16	. 20	. 19	. 10	. 14	. 22	. 70	---	---	. 62	1.1

e Estimated

291842083085100 WEST PASS SUWANNEE RIVER NEAR MOUTH NEAR SUWANNEE, FL--Continued SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUg	SEP
1	---	---	---	---	---	---	---	---	---	2.5	3.2	---
2	---	---	---	---	---	---	---	---	---	2.2	4.1	2.5
3	-	---	---	---	---	-	---	---	---	2.4	1.8	4.9
4	---	---	---	---	---	---	---	---	---	2.7	1.3	6.7
5	---	---	---	---	---	---	---	---	---	1.8	4.2	8.5
6	---	---	---	-	--	-	--	---	---	1.8	3.4	8.6
7	---	---	---	---	---	---	---	--	--	3.4	3.1	5.3
8	-	--	---	---	---	---	---	---	---	3.5	2.5	4.4
9	---	---	---	---	---	---	---	---	---	3.8	2.8	6.1
10	---	---	---	---	---	---	---	---	---	2.3	4.0	6.1
11	---	---	---	---	---	---	---	---	---	4.7	4.6	5.9
12	---	---	---	-	--	---	---	--	--	6.7	3.3	4.3
13	-	---	---	---	---	---	---	---	---	7.2	2.5	2.9
14	---	---	---	---	---	---	---	---	---	---	3.7	1.9
15	---	---	---	---	---	---	---	---	---	---	2.8	8.8
16	---	---	---	---	---	---	---	---	---	---	1.8	11.9
17	---	---	---	---	---	---	---	---	---	---	. 66	9.7
18	---	--	---	---	---	---	---	---	---	---	1.4	11.0
19	---	---	---	---	---	---	---	---	---	---	1.3	13.8
20	---	---	---	---	---	---	---	---	---	---	1.4	10.3
21	-	---	---	---	---	---	---	---	---	---	. 94	9.3
22	---	---	---	---	---	---	---	---	---	---	. 85	6.3
23	-	---	---	--	---	---	---	---	---	---	--	6.4
24	---	---	---	---	---	---	---	---	--	2.5	---	9.0
25	---	---	---	---	---	---	---	---	2.9	2.8	---	11.3
26	---	---	---	---	---	---	---	---	4.1	2.7	---	10.0
27	---	---	---	---	--	---	--	--	4.2	3.7	---	7.6
28	---	---	---	--	---	---	---	---	3.8	4.3	---	5.7
29	---	---	---	---	---	---	---	---	4.5	5.3	---	6.1
30	---	---	---	---	--	---	---	---	4.0	4.9	---	4.9
31	---	---	---	---	---	---	---	---	--	4.5	---	---
MEAN	-	---	---	---	--	---	---	---	---	---	---	---
MAX	---	---	---	---	---	---	---	---	---	-	---	---
MIN	---	---	--	---	---	---	---	---	---	---	---	--

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 76	1.23	-. 36	. 37	-. 24	. 38	. 20	. 49	. 56	. 85	1.07	1.33
2	e. 97	. 99	. 17	. 22	-. 41	. 42	. 60	. 76	. 72	. 70	. 96	1.25
3	e1.09	-. 76	. 68	. 38	-. 06	. 54	1.13	. 70	. 82	. 61	. 89	1.24
4	e. 97	-. 20	. 67	. 56	. 15	. 86	1.04	. 78	. 76	. 78	. 72	1.13
5	e. 88	-. 24	1.09	-. 51	-. 52	. 18	-. 42	. 79	. 98	. 78	. 64	1.09
6	e. 65	-. 08	. 86	-. 17	-. 36	. 27	. 42	. 70	. 76	. 80	. 82	. 96
7	e. 33	. 15	. 13	-. 08	-. 15	. 26	. 64	. 58	. 29	. 86	. 84	. 89
8	. 88	. 53	. 25	. 15	. 02	. 56	1.02	. 66	. 34	. 68	. 58	. 57
9	1.11	. 77	. 38	. 50	-. 13	. 73	-. 67	. 76	. 39	. 65	. 55	. 55
10	1.14	. 79	. 58	. 77	. 09	. 78	. 30	. 89	. 46	. 82	. 78	. 81
11	. 99	. 67	. 44	. 27	. 54	1.09	. 51	. 60	. 43	. 70	1.01	. 81
12	. 90	. 15	. 69	. 04	. 53	. 11	. 45	. 53	. 66	. 75	1.03	. 87
13	1.01	. 17	1.12	. 30	. 57	-. 30	. 34	. 59	. 55	. 70	. 97	. 94
14	. 75	. 53	. 41	-1.44	1.10	-. 04	. 22	. 51	. 74	1.02	. 91	1.16
15	. 15	. 49	. 22	-. 89	. 22	. 34	. 52	. 23	. 97	1.22	. 67	1.29
16	-. 25	. 43	-. 52	. 00	. 13	. 79	. 63	. 12	. 98	1.45	. 66	1.58
17	. 53	. 20	-. 43	. 30	. 23	. 50	. 76	. 54	. 91	1.33	. 90	. 45
18	. 54	. 38	. 32	. 45	. 31	. 00	. 84	. 82	. 91	. 88	. 95	1.08
19	. 66	. 66	. 68	. 48	. 44	. 33	. 49	. 77	. 80	. 86	. 84	. 83
20	. 75	. 92	. 27	. 66	-. 01	. 62	. 73	. 77	. 70	1.01	. 80	. 95
21	. 28	. 83	. 50	-. 36	-. 37	. 22	1.16	. 87	. 52	. 97	. 64	1.13
22	. 50	. 61	. 14	. 46	-. 48	. 09	. 50	1.02	. 54	1.17	. 38	. 95
23	. 70	. 55	-. 26	. 85	-. 09	-. 10	. 68	. 88	. 70	. 99	. 45	. 75
24	. 16	. 59	-. 37	. 52	. 16	. 13	1.51	. 91	. 77	1.08	. 61	. 74
25	. 24	. 86	-. 70	-. 36	. 31	. 66	1.16	. 85	. 72	. 94	. 78	. 89
26	. 51	1.02	-. 17	-. 62	. 46	. 80	. 39	. 69	. 70	. 77	. 85	. 87
27	. 64	. 29	. 07	-. 58	. 59	1.61	. 45	. 53	. 72	. 72	1.03	. 32
28	. 49	. 17	. 36	-. 60	. 09	. 97	1.17	. 64	. 96	. 77	1.01	. 22
29	. 33	. 36	. 02	. 11	. 26	. 84	. 59	. 67	1.16	. 93	1.03	. 06
30	. 76	-. 71	. 31	. 03	---	1.14	. 24	. 22	1.22	1.03	. 90	. 09
31	. 70	---	. 53	-. 34	---	. 41	---	. 31	---	1.20	1.05	---
MEAN	. 65	. 41	. 26	. 05	. 12	. 49	. 59	. 65	. 72	. 90	. 82	. 86
MAX	1.14	1.23	1.12	. 85	1.10	1.61	1.51	1.02	1.22	1.45	1.07	1.58
MIN	-. 25	-. 76	-. 70	-1.44	-. 52	-. 30	-. 67	. 12	. 29	. 61	. 38	. 06

e Estimated
TEMPERATURE, WATER TOP (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.4	22.6	17.7	16.1	14.3	20.6	23.2	22.9	27.4	27.6	29.3	29.0
2	26.0	22.3	16.5	16.7	14.8	20.7	23.4	23.4	28.1	27.9	29.6	28.1
3	26.2	21.0	15.9	17.3	14.8	20.9	23.6	23.9	28.8	28.0	29.6	27.6
4	25.9	19.6	16.6	17.9	15.1	21.1	23.2	24.0	29.2	28.3	29.3	27.7
5	25.5	19.5	17.2	17.7	15.4	20.9	22.0	24.3	29.0	29.2	29.8	27.8
6	25.1	19.5	17.7	17.0	14.9	20.8	21.2	24.8	28.6	29.8	30.4	27.1
7	24.5	19.6	17.1	17.6	14.8	21.1	21.7	25.4	28.7	30.2	30.1	27.1
8	24.4	19.8	17.2	18.0	15.2	21.4	21.9	25.6	28.4	29.9	30.4	27.3
9	24.9	20.2	17.9	18.0	15.6	22.1	20.8	26.0	28.1	29.8	30.3	27.4
10	25.5	20.6	18.5	18.3	16.1	22.5	20.6	26.3	27.9	29.9	29.7	27.4
11	26.0	21.0	19.2	18.9	16.4	22.7	20.8	26.7	27.8	30.4	30.0	27.4
12	26.2	21.1	19.3	19.3	16.7	22.2	21.4	27.3	27.9	30.7	29.3	27.6
13	26.5	21.1	19.1	19.2	17.4	21.1	22.2	27.6	28.5	30.1	29.0	28.0
14	26.3	21.4	19.4	18.1	17.6	20.7	21.7	27.7	28.7	29.1	29.1	28.5
15	26.0	21.4	19.4	16.5	18.0	20.6	21.1	27.4	28.9	29.0	29.6	28.7
16	25.6	21.0	18.6	16.1	18.3	21.2	22.0	27.2	29.2	29.4	30.1	28.1
17	25.0	20.2	17.1	16.2	19.2	21.5	22.6	27.0	29.2	29.2	30.2	26.1
18	25.3	19.4	16.5	16.7	20.0	21.9	22.7	26.6	29.4	29.4	30.4	24.4
19	25.1	19.4	16.7	17.2	20.4	21.5	22.7	26.8	29.5	29.9	30.0	24.9
20	25.1	20.0	17.3	17.5	20.5	21.6	23.3	27.2	29.7	30.5	29.8	26.0
21	24.2	20.2	17.4	16.5	19.9	21.8	23.6	27.4	29.4	29.6	29.4	26.4
22	22.8	20.3	17.6	14.5	19.5	22.1	23.1	27.1	29.1	28.9	29.2	26.1
23	22.0	20.1	17.5	15.2	19.2	22.1	22.8	27.5	29.3	28.4	29.4	26.3
24	20.6	20.5	16.7	16.1	19.8	22.0	22.6	27.7	29.0	27.7	29.7	26.8
25	19.8	21.4	16.2	14.6	20.2	22.5	23.1	28.0	28.8	27.7	30.2	27.1
26	20.4	22.0	15.0	13.5	20.5	22.8	22.8	28.3	28.4	28.5	29.8	27.1
27	20.9	21.2	15.5	13.3	20.4	22.7	22.9	28.8	28.1	29.1	29.7	26.1
28	20.9	20.4	15.7	12.8	20.5	22.5	22.7	29.0	28.0	29.5	29.6	25.6
29	21.5	20.5	15.5	13.4	20.4	22.7	23.0	28.9	28.2	29.5	29.0	25.2
30	22.0	19.5	15.6	14.4	---	22.9	23.2	28.3	27.4	29.6	28.9	24.8
31	22.3	-	15.7	14.3	---	23.4	---	27.4	---	29.0	29.2	---
MEAN	24.2	20.6	17.2	16.4	17.8	21.8	22.4	26.7	28.6	29.2	29.7	26.9
MAX	26.5	22.6	19.4	19.3	20.5	23.4	23.6	29.0	29.7	30.7	30.4	29.0
MIN	19.8	19.4	15.0	12.8	14.3	20.6	20.6	22.9	27.4	27.6	28.9	24.4

TEMPERATURE, WATER MIDDLE (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES

DAY	ост	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.5	22.7	17.6	16.0	14.1	20.6	23.2	22.9	27.4	27.6	29.4	29.1
2	26.3	22.4	16.2	16.7	14.6	20.7	23.4	23.4	28.1	28.0	29.6	28.1
3	26.4	21.0	15.7	17.2	14.7	20.9	23.6	23.9	28.8	28.0	29.6	27.6
4	26.0	19.3	16.6	17.9	15.1	21.1	23.2	24.0	29.2	28.2	29.4	27.7
5	25.6	19.2	17.2	17.7	15.3	20.9	22.0	24.3	29.0	29.3	29.8	27.8
6	25.2	19.4	17.7	16.9	14.8	20.8	21.2	24.8	28.5	29.8	30.4	27.1
7		19.6	17.1	17.6	14.7	21.1	21.6	25.4	28.7	30.3	30.2	27.2
8		19.8	17.2	18.0	15.1	21.4	21.9	25.5	28.2	29.9	30.5	27.4
9	24.9	20.3	17.9	18.0	15.6	22.1	20.8	26.0	27.9	29.8	30.5	27.5
10	25.6	20.7	18.6	18.3	16.1	22.5	20.5	26.3	27.8	30.0	29.8	27.4
11	26.1	21.1	19.3	18.9	16.5	22.7	20.8	26.7	27.8	30.5	30.0	27.4
12	26.3	21.2	19.3	19.4	16.7	22.2	21.4	27.3	27.9	30.7	29.3	27.6
13	26.6	21.3	19.1	19.3	17.4	21.0	22.2	27.6	28.5	30.2	29.0	28.1
14	26.4	21.7	19.5	18.1	17.6	20.4	21.7	27.7	28.7	29.1	29.1	28.5
15	26.2	21.7	19.5	16.5	18.0	20.4	21.1	27.3	28.9	29.0	29.6	28.8
16	25.7	21.4	18.6	15.9	18.3	21.2	21.9	27.2	29.2	29.4	30.1	28.1
17	25.0	20.4	17.0	16.1	19.2	21.5	22.7	27.0	29.2	29.2	30.2	26.2
18	25.6	19.4	16.3	16.6	20.0	21.9	22.7	26.6	29.4	29.4	30.4	24.4
19	25.4	19.4	16.7	17.3	20.4	21.5	22.7	26.8	29.5	29.9	30.1	24.9
20	25.2	19.9	17.3	17.5	20.5	21.6	23.2	27.2	29.7	30.5	29.9	26.0
21	24.3	20.2	17.4	16.4	19.9	21.8	23.6	27.4	29.4	29.6	29.5	26.5
22	22.9	20.3	17.6	14.5	19.5	22.1	23.1	27.1	29.1	28.9	29.3	26.2
23	22.1	20.2	17.5	15.2	19.2	22.1	22.7	27.5	29.4	28.4	29.4	26.4
24	20.6	20.5	16.7	16.1	19.8	22.0	22.6	27.6	29.0	27.7	29.7	26.9
25	19.8	21.4	16.2	14.1	20.3	22.5	23.1	28.0	28.8	27.6	30.3	27.1
26	20.4	22.0	14.8	13.0	20.5	22.8	22.6	28.2	28.4	28.5	29.8	27.1
27	21.0	21.3	15.4	13.0	20.3	22.7	22.8	28.8	28.1	29.1	29.7	26.1
28	21.1	20.5	15.8	12.7	20.5	22.4	22.6	29.0	28.0	29.5	29.6	25.6
29	21.7	20.6	15.5	13.1	20.2	22.6	23.0	28.9	28.2	29.5	29.0	25.2
30	22.2	19.6	15.6	14.3	---	22.9	23.2	28.3	27.4	29.6	28.9	24.8
31	22.5		15.7	14.1	---	23.3		27.4		29.0	29.2	
MEAN	---	20.6	17.2	16.3	17.8	21.7	22.4	26.6	28.6	29.2	29.7	27.0
MAX	---	22.7	19.5	19.4	20.5	23.3	23.6	29.0	29.7	30.7	30.5	29.1
MIN	---	19.2	14.8	12.7	14.1	20.4	20.5	22.9	27.4	27.6	28.9	24.4

TEMPERATURE, WATER BOTTOM (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	ОСт	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.5	22.8	17.3	16.0	13.7	20.4	23.1	22.9	27.3	27.6	29.4	29.1
2	26.3	22.3	15.8	16.6	14.3	20.6	23.4	23.4	28.0	27.9	29.6	28.1
3	26.5	20.8	15.4	17.2	14.5	20.8	23.5	23.9	28.7	28.0	29.6	27.6
4	26.1	18.9	16.5	17.9	15.0	21.0	23.1	23.9	29.1	28.1	29.4	27.7
5	25.6	18.9	17.2	17.7	15.2	20.8	21.9	24.3	28.8	29.2	29.9	27.8
6	25.1	19.2	17.7	16.7	14.6	20.7	21.0	24.8	28.4	29.7	30.4	27.1
7	24.4	19.6	16.9	17.5	14.5	21.0	21.6	25.3	28.6	30.3	30.2	27.1
8	24.5	19.8	17.2	17.9	15.0	21.3	21.9	25.5	27.8	29.9	30.6	27.5
9	24.9	20.2	17.9	17.9	15.5	22.1	20.7	25.9	27.7	29.9	30.8	27.7
10	25.5	20.6	18.5	18.3	15.9	22.4	20.4	26.2	27.8	30.0	29.8	27.4
11	26.1	21.1	19.3	18.9	16.4	22.7	20.6	26.7	27.7	30.5	30.0	27.4
12	26.3	21.2	19.3	19.4	16.7	22.2	21.3	27.2	27.9	30.7	29.3	27.6
13	26.6	21.4	19.1	19.3	17.3	20.6	22.1	27.5	28.5	30.2	28.9	28.1
14	26.5	21.8	19.5	18.1	17.5	20.1	21.6	27.7	28.7	29.1	29.1	28.5
15	26.3	21.8	19.5	16.3	17.9	20.2	21.0	27.3	28.9	28.9	29.5	28.8
16	25.7	21.5	18.5	15.6	18.1	21.2	21.9	27.1	29.2	29.4	30.0	28.1
17	24.9	20.5	16.8	15.9	19.1	21.5	22.6	26.9	29.2	29.1	30.2	26.2
18	25.7	19.4	16.1	16.5	19.9	21.9	22.6	26.5	29.4	29.4	30.4	24.4
19	25.5	19.3	16.6	17.2	20.3	21.4	22.6	26.8	29.5	29.9	30.1	24.8
20	25.2	19.9	17.2	17.4	20.5	21.6	23.2	27.2	29.7	30.5	29.9	26.1
21	24.2	20.2	17.3	16.2	19.7	21.7	23.5	27.3	29.4	29.6	29.5	26.5
22	22.8	20.3	17.6	14.3	19.3	22.0	23.0	27.1	29.0	28.9	29.2	26.2
23	22.0	20.1	17.4	15.2	19.1	22.0	22.6	27.4	29.3	28.4	29.5	26.4
24	20.5	20.5	16.6	16.1	19.8	21.9	22.6	27.5	29.0	27.6	29.8	26.9
25	19.7	21.4	16.0	13.4	20.2	22.5	23.0	27.9	28.7	27.6	30.4	27.1
26	20.3	22.0	14.6	12.4	20.4	22.7	22.4	28.1	28.4	28.5	29.8	27.1
27	21.0	21.3	15.1	12.5	20.2	22.6	22.7	28.8	28.1	29.2	29.7	26.1
28	21.1	20.6	15.7	12.5	20.4	22.3	22.5	29.0	28.0	29.6	29.6	25.6
29	21.8	20.7	15.4	12.8	20.0	22.4	23.0	28.8	28.2	29.5	29.0	25.1
30	22.3	19.6	15.5	14.1		22.8	23.1	28.3	27.4	29.6	28.9	24.8
31	22.6		15.6	13.9	---	23.3		27.3		29.0	29.3	
MEAN	24.3	20.6	17.1	16.2	17.6	21.6	22.3	26.6	28.5	29.2	29.7	27.0
MAX	26.6	22.8	19.5	19.4	20.5	23.3	23.5	29.0	29.7	30.7	30.8	29.1
MIN	19.7	18.9	14.6	12.4	13.7	20.1	20.4	22.9	27.3	27.6	28.9	24.4

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.6	6.7	2.1	2.0	. 99	2.0	. 62	3.5	7.9	5.0	7.4	8.5
2	3.7	5.8	4.4	2.0	2.1	2.4	2.4	4.1	8.8	5.5	7.4	5.3
3	3.1	. 99	7.0	3.1	4.6	3.6	3.8	3.9	9.1	5.9	5.8	3.0
4	2.6	2.6	5.4	4.2	5.2	4.8	4.5	4.1	8.4	8.0	3.1	2.0
5	3.5	2.8	8.0	1.2	2.9	2.6	. 72	4.8	9.7	7.9	2.5	1.9
6	2.3	3.0	5.4	2.5	3.3	3.8	2.7	4.4	7.3	7.3	2.9	1.8
7	1.5	4.3	2.0	4.0	5.2	3.6	2.6	3.4	3.1	6.2	2.3	2.8
8	3.7	6.3	3.9	4.9	5.2	5.5	3.5	2.5	2.3	1.6	2.3	2.2
9	3.3	6.9	4.1	8.0	3.8	5.3	. 58	1.9	3.8	2.1	2.6	4.8
10	4.1	5.9	5.8	7.0	4.9	4.4	1.4	. 61	4.7	3.2	4.3	4.8
11	4.1	5.1	3.8	2.0	4.3	3.9	. 53	. 44	3.7	3.2	5.5	3.9
12	3.8	2.5	4.6	1.4	2.3	1.7	. 28	. 73	3.6	3.8	2.9	4.3
13	3.9	2.9	6.9	2.3	2.5	1.0	. 37	1.2	2.6	3.5	3.3	4.9
14	2.3	5.9	. 74	. 32	3.7	1.7	. 45	2.1	3.6	6.9	4.1	5.8
15	1.5	5.0	. 83	1.6	1.1	4.0	1.5	2.0	5.5	8.5	4.6	5.7
16	2.2	5.0	. 51	4.3	2.0	4.1	2.1	1.9	5.3	9.7	4.4	7.4
17	9.0	3.8	. 98	5.0	3.1	1.2	2.5	4.3	4.2	7.8	5.9	. 78
18	5.0	6.0	4.0	5.6	4.2	. 99	4.7	4.9	4.9	5.6	5.6	. 81
19	4.8	6.3	4.5	5.5	5.7	2.4	1.6	3.5	4.3	4.7	4.3	. 68
20	5.3	7.9	2.4	8.1	3.9	4.1	2.8	2.8	3.9	5.3	3.2	1.6
21	2.5	7.9	4.9	3.6	2.1	2.4	4.7	3.5	2.4	4.1	2.3	1.7
22	4.5	6.0	3.8	9.2	1.9	3.0	2.8	3.5	3.2	4.0	1.7	1.5
23	7.3	6.3	2.6	9.4	2.8	2.0	4.1	2.4	3.6	1.5	2.9	. 39
24	5.2	7.0	2.6	4.6	2.6	3.2	5.5	1.8	3.0	1.7	4.3	1.0
25	5.3	9.0	2.2	3.9	2.3	3.6	2.2	1.7	2.3	1.4	5.6	1.9
26	6.6	9.4	4.1	4.9	2.0	4.3	. 55	. 98	2.0	1.6	5.0	2.3
27	7.3	3.4	4.1	3.2	. 76	6.4	. 58	. 93	2.9	2.7	6.9	. 83
28	5.0	3.1	4.4	2.6	. 85	. 75	1.4	2.3	4.1	4.6	8.1	. 92
29	3.5	3.8	1.5	4.0	1.2	. 51	. 67	3.3	6.5	7.0	7.0	. 78
30	5.9	. 76	2.2	. 82	---	1.9	. 79	2.4	7.5	8.5	6.7	. 36
31	4.0	---	2.5	. 52	---	. 22	---	4.9	---	8.7	7.8	---
MEAN	4.2	5.1	3.6	3.9	3.0	2.9	2.1	2.7	4.8	5.1	4.6	2.8
MAX	9.0	9.4	8.0	9.4	5.7	6.4	5.5	4.9	9.7	9.7	8.1	8.5
MIN	1.5	. 76	. 51	. 32	. 76	. 22	28	44	2.0	1.4	1.7	36

SALINITY MIDDLE (PARTS PER THOUSAND), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.5	7.7	3.3	2.5	1.9	2.2	. 71	3.8	8.1	5.2	7.0	8.5
2	4.0	6.6	6.9	2.5	3.1	2.4	2.6	4.1	8.8	5.8	6.8	5.3
3	3.4	1.7	8.3	3.9	5.5	3.3	3.8	3.8	9.2	6.2	5.6	3.1
4	2.6	4.8	5.9	4.7	5.6	4.2	4.0	4.1	8.6	8.2	3.1	2.0
5	3.7	4.4	8.5	1.5	3.4	2.6	. 80	5.0	9.9	8.0	2.6	1.8
6	2.4	4.4	5.8	3.3	4.0	3.7	2.6	4.3	8.0	8.1	2.9	1.9
7	---	5.3	3.1	4.4	6.1	3.5	2.5	3.3	3.2	7.1	2.3	3.3
8	-	7.3	4.9	5.7	5.9	5.3	3.4	2.5	3.5	1.8	2.9	3.7
9	3.1	7.5	4.7	8.2	4.3	5.0	. 58	1.9	5.0	2.3	3.7	5.6
10	3.8	6.5	6.2	6.9	5.1	4.1	1.3	. 76	5.3	3.2	4.7	5.0
11	3.9	5.8	4.0	2.2	4.1	3.9	1.0	. 57	3.9	3.4	5.8	4.0
12	3.7	3.3	5.1	1.7	2.4	1.7	. 65	. 80	3.8	4.1	3.6	4.3
13	3.8	4.8	7.4	2.9	2.4	1.5	. 54	1.3	2.6	4.0	3.4	4.9
14	2.5	8.6	. 87	. 33	4.2	2.6	. 64	2.3	3.7	7.8	4.1	5.9
15	2.2	9.6	1.3	2.1	1.6	4.1	1.9	2.2	5.7	9.0	4.5	5.8
16	3.2	11.5	. 67	4.9	2.6	3.9	2.3	2.0	5.3	9.9	4.2	7.5
17	11.7	8.0	1.7	5.6	3.4	1.3	2.7	4.4	4.1	8.1	5.5	. 79
18	10.4	7.4	4.8	6.0	3.9	. 99	4.7	4.9	4.6	6.1	5.0	. 81
19	7.8	6.9	5.1	5.7	4.9	2.5	1.7	3.4	4.3	4.7	4.1	. 75
20	5.8	8.5	2.9	8.4	3.3	3.8	2.8	2.8	4.0	5.5	3.3	1.9
21	3.0	8.5	5.1	4.3	2.1	2.4	4.5	3.4	2.7	4.4	2.4	1.8
22	5.1	6.7	3.8	9.0	2.0	2.9	2.9	3.5	4.0	4.2	2.0	1.7
23	7.6	6.9	2.8	9.1	2.6	2.1	4.3	2.6	4.4	1.6	3.2	. 62
24	5.8	7.7	3.2	4.7	2.5	3.0	5.0	2.2	3.3	1.8	4.7	1.3
25	5.8	9.8	3.0	5.8	2.2	3.4	2.6	2.3	2.5	1.5	5.9	2.0
26	7.0	9.9	5.1	7.7	2.1	4.6	1.5	1.2	2.2	1.7	4.8	2.5
27	7.7	4.1	5.6	5.1	2.2	6.4	. 80	. 99	2.9	2.8	6.6	. 90
28	5.5	4.2	5.8	3.1	1.2	. 68	2.7	2.4	4.2	4.5	7.8	1.1
29	4.9	6.0	2.4	4.9	2.0	. 73	1.1	3.8	6.6	6.9	7.1	. 98
30	7.4	. 98	3.5	1.2	---	1.9	1.2	2.8	7.7	7.9	6.8	. 38
31	5.5	---	3.8	1.1	---	. 23	---	5.0	---	8.0	7.9	---
MEAN	---	6.5	4.4	4.5	3.3	2.9	2.3	2.9	5.1	5.3	4.7	3.0
MAX	---	11.5	8.5	9.1	6.1	6.4	5.0	5.0	9.9	9.9	7.9	8.5
MIN	---	. 98	. 67	. 33	1.2	. 23	. 54	. 57	2.2	1.5	2.0	. 38

291842083085100 WEST PASS SUWANNEE RIVER NEAR MOUTH NEAR SUWANNEE, FL--Continued
SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.4	8.6	6.8	3.0	3.6	3.5	. 86	4.5	8.6	5.5	7.9	9.0
2	5.4	7.6	10.7	3.1	5.1	3.5	3.1	4.8	9.4	6.2	7.8	5.7
3	4.5	3.2	10.3	4.8	7.3	4.4	4.4	4.4	9.9	7.0	6.5	3.4
4	3.8	7.7	6.5	5.2	6.6	5.6	5.1	4.5	9.3	9.2	3.8	2.2
5	4.7	6.3	8.8	1.7	4.3	3.4	. 94	5.4	10.9	8.5	3.3	1.9
6	3.1	5.6	6.5	4.5	4.7	4.4	3.4	4.5	9.1	8.9	3.4	2.1
7	1.9	6.2	4.6	5.4	6.7	4.2	3.1	3.5	3.8	8.3	2.6	3.8
8	4.2	8.1	6.1	7.1	6.2	6.2	3.8	2.8	5.5	2.1	3.7	5.3
9	3.9	7.8	5.9	8.9	5.2	6.1	. 66	2.2	7.1	2.6	5.6	7.1
10	4.5	6.9	7.0	7.1	6.0	4.9	1.8	1.0	6.5	3.8	5.3	5.9
11	4.7	6.4	4.5	2.8	4.4	3.9	2.3	1.0	4.7	3.9	7.4	4.7
12	4.6	4.0	6.2	2.2	2.4	2.1	1.1	. 98	4.3	4.7	4.7	4.7
13	4.6	7.2	8.1	3.8	2.3	2.3	. 95	1.6	2.9	4.8	4.0	5.6
14	3.4	10.4	1.4	. 39	4.5	4.4	1.1	2.8	3.9	8.8	4.4	6.6
15	3.7	12.6	2.1	2.7	1.9	5.2	2.5	2.6	6.0	9.8	4.6	6.4
16	4.9	15.2	1.3	6.0	3.2	4.1	2.6	2.2	5.8	10.2	3.9	8.2
17	16.6	12.3	2.9	6.8	4.3	1.3	3.2	4.8	4.3	8.5	5.9	1.2
18	14.6	9.1	6.0	6.6	5.0	1.2	5.7	5.4	5.1	6.9	5.7	. 87
19	10.7	7.2	6.0	6.3	6.3	2.8	2.0	3.6	4.7	4.7	4.9	. 98
20	6.8	8.6	3.4	9.8	4.4	4.0	3.0	3.0	4.3	5.5	3.9	2.8
21	4.0	8.6	5.4	5.7	3.0	2.7	5.1	3.6	3.5	4.7	3.2	2.1
22	5.9	6.9	4.1	10.3	2.8	3.4	3.5	3.7	5.6	4.5	2.7	2.1
23	8.5	7.2	3.3	10.1	3.1	2.6	4.9	3.1	6.0	1.7	3.9	. 87
24	7.2	8.1	4.1	5.1	3.2	3.7	5.9	2.7	3.9	2.1	5.7	1.7
25	6.7	10.1	4.6	8.7	2.7	3.6	3.5	3.0	2.9	1.6	7.4	2.3
26	7.7	10.1	6.5	10.7	2.6	5.0	3.1	1.6	2.4	1.8	5.6	2.8
27	8.3	4.9	8.2	7.7	3.9	6.7	2.2	1.2	3.2	3.0	7.4	. 99
28	6.1	5.9	7.2	3.8	2.0	1.3	4.1	2.8	4.5	4.6	8.6	1.4
29	6.7	8.3	4.5	5.8	3.6	1.5	1.7	5.0	7.0	6.9	7.5	1.2
30	8.7	1.9	5.6	2.0	---	2.2	1.8	3.2	8.3	9.1	7.4	. 65
31	6.8	---	4.8	2.0	---	. 23	---	5.3	---	9.0	8.5	---
MEAN	6.1	7.8	5.6	5.5	4.2	3.6	2.9	3.3	5.8	5.8	5.4	3.5
MAX	16.6	15.2	10.7	10.7	7.3	6.7	5.9	5.4	10.9	10.2	8.6	9.0
MIN	1.9	1.9	1.3	. 39	1.9	. 23	. 66	. 98	2.4	1.6	2.6	. 65

GULF OF MEXICO
291912083154800 GULF OF MEXICO AT RED BANK REEF NEAR SUWANNEE, FL
LOCATION.-- Lat. $29^{\circ} 19^{\prime} 12^{\prime \prime}$, long. $83^{\circ} 15^{\prime} 48^{\prime \prime}$, about 5.5 mi . west of the mouth of the Suwannee River at Wadley Pass, at about a 285° heading from Buoy 1 marker.
PERIOD OF RECORD.-- July 1999 to October 2000.
GAGE.--Water temperature and salinity measured at one depth (undetermined).
REMARKS.-- Tidally-influenced site. Record is rated as follows: FY 1999 and 2000: water temperature--good; salinity--good to fair.
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	---	31.7	30.1
2	---	---	---	---	---	---	---	---	--	-	31.6	29.8
3	---	---	---	---	-	---	---	--	-	-	30.9	29.8
4	-	-	-	---	---	---	---	---	---	---	30.4	29.7
5	-	-	-	---	-	---	---	---	---	---	30.5	29.8
6	---	---	---	---	--	---	---	---	--	--	30.8	29.6
7	---	-	--	---	---	---	---	---	---	---	30.4	29.6
8	---	---	---	---	--	---	---	---	-	-	29.7	29.6
9	---	--	---	---	---	---	---	--	-	-	29.2	29.7
10	-	-	--	---	-	---	--	--	---	---	29.0	29.6
11	---	---	---	---	---	---	---	---	-	---	29.0	29.6
12	---	---	---	-	-	---	---	---	-	-	29.2	29.1
13	-	--	-	---	---	-	---	---	---	---	29.9	28.6
14	---	---	---	---	---	---	---	---	--	--	30.4	28.0
15	---	---	---	---	--	---	---	--	-	--	30.1	27.4
16	-	--	---	---	---	--	---	-	---	---	29.6	27.4
17	---	---	---	---	---	---	---	---	--	--	30.0	26.9
18	---	---	---	---	---	--	--	---	---	---	30.1	26.6
19	-	-	--	---	---	--	-	-	---	---	30.3	26.8
20	---	--	---	---	-	---	---	-	---	---	30.1	26.8
21	-	---	---	---	---	--	--	-	---	-	29.7	26.8
22	---	---	---	---	-	---	---	---	-	-	30.2	26.4
23	-	--	---	---	-	--	---	-	-	---	30.6	25.8
24	---	---	---	---	--	---	---	---	-	-	30.4	25.6
25	---	---	---	--	--	---	---	---	-	---	30.4	25.8
26	---	---	---	---	---	---	---	---	--	---	30.7	26.1
27	---	---	---	---	---	---	---	---	---	---	31.1	26.3
28	---	---	---	---	--	---	---	---	-	31.2	31.3	26.6
29	--	--	--	---	-	--	---	-	-	31.2	31.2	27.1
30	---	---	---	---	---	---	---	---	--	31.2	31.4	27.4
31	---	---	---	---	---	---	---	---	---	31.5	31.0	---
MEAN	---	---	---	---	---	---	---	---	---	---	30.4	27.9
MAX	---	---	---	---	---	---	---	---	---	---	31.7	30.1
MIN	---	---	---	---	---	---	---	---	---	---	29.0	25.6

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	--	---	---	---	---	---	---	--	31.3	-
2	---	---	---	-	---	-	---	-	---	---	31.6	-
3	--	---	---	-	---	---	-	-	---	---	31.2	-
4	---	---	---	---	---	---	---	---	-	---	31.3	---
5	---	---	-	--	---	---	-	--	--	-	30.9	---
6	--	--	---	-	-	---	---	---	---	---	29.7	---
7	---	---	---	---	---	---	---	---	---	--	---	-
8	-	---	-	---	-	-	---	-	-	-	---	---
9	--	---	---	--	--	---	-	--	--	---	---	-
10	---	---	---	---	---	---	---	---	---	--	---	---
11	--	-	---	---	--	--	---	--	-	--	---	-
12	---	---	---	---	---	---	---	---	---	---	--	---
13	---	---	---	---	---	---	---	---	---	---	---	---
14	--	-	---	---	--	---	---	--	--	--	---	---
15	---	---	---	-	---	---	---	---	---	---	---	-
16	---	---	--	--	---	---	-	--	--	--	-	---
17	--	---	---	---	---	---	---	---	---	---	---	-
18	---	---	---	-	---	---	-	---	---	---	-	---
19	---	---	---	---	---	---	-	---	---	---	-	---
20	---	---	---	-	--	--	---	-	---	---	---	-
21	---	---	---	-	---	---	-	---	---	---	--	-
22	---	---	---	---	---	---	---	---	---	---	--	---
23	---	---	---	---	---	---	--	--	---	---	--	---
24	---	---	-	--	---	-	-	-	-	---	---	---
25	---	---	---	--	---	---	---	---	--	---	-	-
26	---	---	---	--	---	---	-	--	---	---	-	---
27	---	--	-	-	---	---	---	---	---	---	---	---
28	---	---	---	---	---	---	---	---	---	30.1	-	---
29	---	---	---	---	---	---	---	---	---	30.0	---	---
30	---	-	---	-	---	---	-	--	-	30.7	--	-
31	---	---	---	---	---	---	---	---	---	31.1	---	---

DAY	ост	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUg	SEP
1	27.1	22.0	15.7	14.5	10.5	19.1	23.2	22.7	27.5			29.6
2	26.6	21.8	14.7	15.3	10.7	19.5	23.4	23.2	28.0	---	30.0	28.7
3	26.7	19.2	14.8	15.8	11.0	19.8	23.5	23.8	28.6		30.0	28.0
4	26.6	17.9	15.2	16.2	11.6	19.9	23.0	24.0	29.0	---	30.0	27.8
5	26.3	17.7	16.1			19.6			29.0	29.4	30.5	27.6
6	25.9	17.9	16.6	14.8		19.5	20.4	---	28.7	29.6	30.7	27.5
7	25.0	18.1	15.5	15.2	11.1	19.8	20.7	---	28.1	30.1	30.9	27.4
8	25.0	18.5	15.5	15.4	11.6	20.0	---	---	27.7	30.4	31.4	27.9
9	25.3	19.2	15.8	15.7	12.0	20.7	---	---	27.9	30.3	31.1	27.9
10	25.6	19.7	16.4	16.2	12.7	21.2	---	---	27.6	30.4	30.8	28.3
11	26.0	20.0	16.9	16.6	13.2	21.6	19.7	---	27.6	30.7	30.9	28.4
12	26.5	20.4	17.2	17.1	13.9	21.1	20.7	---	27.8	30.9	30.3	28.4
13	26.8	20.3	17.3	17.3	14.5	19.5	21.8	---	28.4	30.3	29.8	28.6
14	26.8	20.4	17.5	---	14.6	19.1	21.3	---	29.0	29.4	29.7	29.0
15	26.4	20.4	17.2	13.9	15.5	19.5	21.1	---	29.2	29.4	29.9	29.4
16	25.6	19.7	16.6	14.1	16.0	20.1	21.9	---	29.5	29.6	30.1	28.9
17	24.9	18.7	14.9	14.4	16.7	20.4	22.6	26.7	29.6	29.6	30.3	26.8
18	25.2	18.3	14.9	15.0	17.4	20.8	22.6	26.6	29.8	29.7	30.7	24.1
19	25.1	18.6	15.3	15.6	18.1	20.8	22.4	26.6	30.0	30.2	30.5	24.7
20	25.2	19.4	15.7	15.9		21.1	22.8	26.9	30.2	30.7	30.4	26.0
21	24.4	19.8	16.0	---	---	21.0	23.2	27.1	30.1	30.1	30.3	26.3
22	23.4	20.0	16.4	13.0	16.4	21.0	22.5	27.0	29.7	29.5	29.7	26.7
23	22.4	19.8	---	13.5	16.5	20.9	22.0	27.4	30.2	28.8	---	---
24	20.3	20.0	---	13.6	17.2	20.7	22.1	27.6	30.2	27.9	---	--
25	19.2	20.5	---	11.9	17.9	21.4	22.4	28.0	29.9	27.6	---	28.2
26	19.4	20.8	12.3	10.2	18.6	21.7	21.9	28.6	29.6	28.6	---	---
27	19.8	20.1	12.4	9.6	18.6	21.9	21.9	29.2	29.2	29.2	---	---
28	19.9	19.4	12.7	9.0	18.8	21.7	22.1	29.3	29.4	---	---	---
29	20.5	19.2	12.6	10.1	18.6	22.0	22.3	29.1	29.3	---	---	---
30	21.2	17.8	12.8	11.1		22.6	22.6	28.2		---	30.1	---
31	22.0		13.5	10.7	---	23.7		27.6	---	---	30.0	---
MEAN	24.2	19.5	---	---	---	20.7	---	---	---	---	---	---
MAX	27.1	22.0	---	---	---	23.7	---	---	---	---	---	---
MIN	19.2	17.7	---	---	---	19.1	---	---	---	---	---	---

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DÁILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	29.9	35.0	31.5	33.2	30.4	29.3	34.8	34.6	---	---	28.5
2	---	30.6	35.3	28.9	33.8	31.1	29.2	34.5	34.6	--	---	27.1
3	---	32.2	34.2	30.4	34.4	31.5	29.9	---	---	---	29.4	26.7
4	---	32.8	33.6	31.7	34.1	31.8	31.0	---	36.4	---	29.7	26.2
5	---	33.5	32.6	---	---	31.6	---	---	36.4	---	29.9	25.7
6	---	33.9	32.1	31.1	---	31.8	29.6	---	36.2	31.1	30.6	26.9
7	26.6	34.2	32.8	31.4	34.7	31.6	29.3	---	36.0	31.5	30.9	---
8	27.2	34.1	32.7	32.0	34.8	30.7	---	---	36.1	31.4	30.1	27.1
9	26.8	33.6	31.5	31.9	34.8	30.0	---	---	35.7	28.9	31.4	28.3
10	25.2	32.8	31.1	32.0	34.7	29.5	---	---	33.9	29.2	32.9	29.4
11	26.7	33.7	30.7	30.4	34.4	30.0	28.7	---	32.1	29.6	32.9	28.8
12	27.1	33.9	30.3	29.4	33.1	29.8	27.4	---	31.9	31.3	32.4	---
13	27.1	34.1	31.9	30.3	32.6	30.6	26.4	---	31.6	31.8	32.5	29.2
14	27.3	34.2	30.9	---	33.4	30.8	27.5	---	31.8	31.8	---	29.2
15	27.4	34.4	29.3	31.0	32.3	30.2	29.0	---	31.8	32.0	---	29.3
16	---	34.7	29.8	30.2	30.3	29.8	29.8	---	31.5	---	---	29.3
17	---	34.9	30.2	31.4	31.1	29.1	30.2	35.0	31.3	32.3	32.5	---
18	---	34.8	30.9	31.5	---	28.1	30.9	33.0	31.5	---	32.0	24.5
19	30.9	34.3	30.2	31.1	31.4	29.9	32.5	31.9	30.8	---	32.3	---
20	30.6	33.1	30.1	31.3	---	29.9	31.8	31.7	31.1	32.1	32.5	23.0
21	30.8	32.8	29.7	---	---	30.4	32.1	31.5	29.8	31.9	---	21.1
22	32.1	33.2	---	33.2	---	30.1	33.7	31.5	30.1	31.5	29.7	21.7
23	33.4	33.9	---	32.1	31.2	29.8	33.9	31.3	32.3	30.4	---	---
24	33.9	---	---	31.0	30.5	30.2	32.6	32.5	32.6	29.5	---	---
25	34.3	34.5	---	33.2	29.5	30.4	31.8	33.3	32.0	28.7	---	---
26	34.0	33.6	---	34.5	29.0	30.0	34.1	34.4	31.6	26.9	---	---
27	34.1	34.4	34.4	34.9	31.3	29.6	34.7	35.2	31.8	---	---	---
28	33.9	34.8	34.5	34.8	30.6	30.1	34.6	36.1	32.4	---	---	---
29	33.6	35.0	35.3	33.3	31.2	30.8	34.6	36.2	---	---	---	---
30	32.4	34.6	35.0	28.8	---	29.0	34.7	36.0	---	---	---	---
31	30.6	---	32.6	32.3	---	27.9	-	34.7	--	--	28.1	---
MEAN	---	---	---	---	---	30.2	---	---	---	---	---	---
MAX	---	---	---	---	---	31.8	---	---	---	---	---	---
MIN	---	---	---	---	---	27.9	---	---	---	---	---	---

LOCATION.-- Lat. $29^{\circ} 19^{\prime} 30^{\prime \prime}$, long. $83^{\circ} 08^{\prime} 28^{\prime \prime}$, in $\mathrm{NE}^{1} / 4 \mathrm{sec}$. 30 , T. 13S., R. 12E., Dixie County, hydrologic unit 03110205 , on right bank, 0.2 mi downstream of Demory Creek and 2.8 mi . above the mouth of Wadley Pass.
DRAINAGE AREA.--Indeterminate.
PERIOD OF RECORD.-- August 1995 to October 2000.
GAGE.--Water-stage recorder; datum of gage is 4.65 ft. below National Geodetic Vertical Datum (NGVD) of 1929; water-quality measured at two elevations, 2.80 ft . (top) and 14.78 ft (bottom) below NGVD 1929.

REMARKS.-- Tidally-influenced site--discharge computed using index velocity. Previous to March 1999, gage was located about 20 ft . northwest of present location and water temperature, salinity were measured at one undetermined elevation. Record is rated as follows: 1995: discharge, gage height--all estimated, poor; water temperature, salinity--fair to poor; 1996: discharge, gage height--all estimated, poor; water temperature, salinity--fair to poor; 1997: discharge, gage height, water temperature, salinity--fair to poor; estimated periods poor; 1998: discharge--no data; gage height--poor; water temperature, salinity--fair to poor; estimated periods poor; 1999: discharge, gage height, water temperature, salinity--previous to March 1999, fair to poor; March to September 1999, fair; estimated periods poor; 2000: discharge, elevation--good except for estimated periods, which are fair to poor; water temperature, salinity--good.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	---	---	2620
2	---	---	---	---	---	---	---	---	-	-	-	3530
3	---	-	-	--	-	---	---	-	-	---	---	3150
4	--	--	-	-	---	-	-	---	---	---	---	3680
5	---	---	---	---	--	--	-	-	-	---	---	3190
6	--	--	---	---	---	---	---	---	---	--	--	2740
7	---	---	---	---	--	---	---	---	-	-	---	3700
8	---	---	---	---	---	---	---	---	--	-	-	5220
9	-	-	--	---	---	--	-	--	-	-	---	4030
10	--	---	---	---	---	---	---	---	---	---	-	5270
11	-	---	---	---	---	---	-	--	-	--	-	4730
12	--	--	--	--	---	--	-	---	-	---	---	4310
13	---	---	---	---	---	---	---	---	---	--	--	4380
14	-	-	-	---	---	-	---	-	-	-	---	3400
15	---	--	---	---	---	--	---	---	-	---	---	3010
16	---	-	--	---	---	--	---	--	--	--	-	2280
17	--	--	--	---	---	--	---	---	-	--	-	1510
18	---	---	---	---	---	---	---	---	--	--	--	1560
19	--	-	--	---	---	--	---	--	-	-	---	1770
20	---	--	--	---	-	-	---	-	-	-	---	2130
21	---	-	-	---	---	-	---	---	-	--	-	4050
22	--	--	--	--	---	---	---	---	--	--	--	4180
23	---	--	---	---	--	---	---	--	--	--	--	4860
24	---	---	---	---	---	---	---	---	--	--	--	5090
25	---	---	---	---	--	---	---	---	---	---	---	4180
26	-	-	--	-	---	-	---	--	-	-	---	3900
27	---	---	---	---	---	---	---	---	--	--	-	5110
28	---	--	--	--	---	---	---	---	-	--	-	4310
29	---	--	---	---	---	---	---	--	--	--	---	4090
30	---	---	---	---	---	---	---	---	---	---	1950	2500
31	---	---	---	---	--	---	---	---	-	-	1630	---
MEAN	---	---	---	---	---	---	---	---	-	--	-	3616
MAX	---	-	---	---	---	---	-	---	-	-	---	5270
MIN	--	---	---	---	---	---	---	---	---	---	---	1510

Water year 1995 discharges are estimated.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	-	---	--	---	---	---	---	---	5.50
2	-	---	---	---	---	--	---	---	---	---	---	5.45
3	---	-	---	---	-	---	--	---	-	---	---	5.17
4	---	--	---	--	-	---	--	---	---	---	---	5.03
5	---	-	---	---	---	---	---	---	---	---	---	5.00
6	---	---	---	---	---	---	---	---	---	---	---	5.19
7	---	---	---	-	---	---	--	---	---	---	--	5.76
8	---	---	---	---	---	--	---	--	---	-	--	5.84
9	---	---	---	---	---	--	---	--	---	--	--	5.79
10	---	--	---	---	--	---	---	---	--	---	---	5.67
11	---	---	---	--	---	--	---	---	---	---	---	5.55
12	---	-	---	---	---	---	---	---	---	---	---	5.61
13	-	---	---	---	---	---	---	---	--	---	---	5.56
14	---	---	---	---	--	---	---	---	---	---	---	5.61
15	--	--	---	--	---	---	---	---	---	---	---	5.42
16	---	---	---	---	---	--	---	---	---	---	---	5.45
17	---	---	---	---	---	--	---	---	---	---	--	5.49
18	---	---	--	--	---	---	--	---	---	---	---	5.39
19	---	--	-	--	--	---	---	---	---	---	---	5.34
20	---	--	---	---	---	---	---	---	--	---	---	5.31
21	---	--	---	-	---	---	---	---	--	---	---	5.26
22	---	--	---	---	---	---	---	---	---	---	--	5.70
23	---	---	---	---	---	---	---	---	--	---	---	5.77
24	---	---	---	---	-	---	---	---	---	---	---	5.61
25	--	---	---	---	---	---	---	---	---	---	---	5.63
26	---	---	---	---	---	---	---	---	---	---	---	5.94
27	---	--	---	---	---	---	---	---	---	---	---	5.89
28	---	-	---	---	-	---	--	---	--	---	---	5.61
29	---	---	---	---	---	--	---	---	---	---	--	5.58
30	---	---	---	--	---	---	--	---	--	---	4.69	5.25
31	---	---	-	-	-	--	-	--	---	---	4.91	---
MEAN	---	---	---	---	---	---	---	--	---	--	---	5.51
MAX	---	---	---	---	---	---	--	---	--	---	--	5.94
MIN	--	---	--	---	---	---	---	---	---	--	---	5.00

Water year 1995 gage heights are estimated.
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995 DAILY MEAN VALUES

DAY	ОС'	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP
1	---	---	---	---	--	--	---	---	---	---	---	27.4
2	---	---	---	---	---	---	--	---	---	---	---	27.6
3	-	---	---	---	---	---	---	---	---	---	---	27.7
4	---	---	---	--	---	---	---	---	---	---	---	27.7
5	--	-	---	---	---	---	---	---	---	---	---	27.4
6	---	---	---	--	---	---	---	---	---	-	---	26.5
7	-	---	---	---	---	---	---	---	---	---	---	26.1
8	--	---	---	---	---	---	---	---	---	---	-	26.3
9	---	---	---	--	---	--	---	---	---	-	---	26.8
10	--	---	---	---	---	---	---	---	---	---	---	26.8
11	---	---	---	--	---	---	---	---	---	---	---	26.8
12	---	---	---	---	---	---	---	---	---	---	---	27.4
13	---	--	---	---	---	---	---	---	---	---	---	27.7
14	---	---	--	--	-	---	---	---	---	---	---	28.1
15	--	--	---	---	---	---	---	---	---	---	---	28.0
16	---	---	---	--	---	---	--	---	---	---	---	27.8
17	--	-	---	---	---	---	---	---	---	---	---	27.7
18	---	---	---	--	---	---	---	---	---	---	---	27.8
19	---	---	---	--	---	---	---	---	---	---	---	28.0
20	---	---	---	---	---	---	---	---	---	---	---	27.9
21	---	---	---	---	---	---	---	---	---	---	---	27.7
22	--	---	---	---	---	---	---	---	---	---	---	27.8
23	---	---	---	-	--	---	---	---	---	---	--	28.1
24	---	--	--	---	---	---	---	---	---	---	27.7	27.5
25	---	---	---	---	---	---	---	---	---	---	27.7	26.6
26	---	---	---	---	---	---	---	---	---	---	28.1	26.7
27	---	---	---	---	---	---	---	---	---	---	28.5	26.4
28	---	---	---	---	---	--	---	---	---	---	28.7	26.3
29	---	---	-	---	---	---	---	---	---	---	e28.2	26.2
30	---	---	---	---	--	---	---	---	---	---	27.8	26.1
31	---	---	---	---	---	---	---	---	---	---	27.5	
MEAN	---	---	---	--	---	---	---	---	---	---	---	27.2
MAX	---	---	---	---	---	---	---	---	---	---	---	28.1
MIN	---	---	---	---	---	---	---	---	---	---	---	26.1

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	---	---	1.6
2	---	---	---	---	---	---	---	---	---	-	---	1.9
3	---	---	---	---	---	---	---	---	---	---	--	. 78
4	---	---	---	---	---	---	---	---	---	--	--	1.1
5	---	---	---	---	---	---	---	---	---	--	-	1.5
6	---	---	---	---	---	---	---	---	---	---	---	2.0
7	---	---	---	---	---	---	---	---	---	-	---	3.7
8	---	-	---	-	-	---	---	--	-	--	-	4.0
9	--	--	--	--	--	--	-	-	-	-	---	3.7
10	---	---	---	---	---	---	---	---	---	---	--	2.7
11	---	---	---	---	---	---	---	---	---	---	---	1.5
12	---	---	---	---	---	---	---	---	---	---	---	1.9
13	---	---	---	---	---	---	---	--	--	--	-	. 82
14	---	---	--	--	---	---	---	--	---	--	-	1.2
15	---	---	---	---	---	---	---	---	---	--	--	. 61
16	---	-	--	-	--	---	---	---	-	---	-	. 62
17	---	---	---	---	---	---	---	---	---	---	---	. 64
18	---	---	---	--	---	---	--	---	---	-	-	. 20
19	---	-	---	--	-	---	---	--	-	-	--	. 97
20	---	---	---	---	---	---	---	---	---	--	--	1.3
21	---	---	---	---	---	---	---	---	---	--	-	1.2
22	---	---	---	---	---	---	---	---	---	---	--	3.5
23	---	---	---	---	---	---	---	---	---	--	---	3.9
24	---	---	---	---	---	---	---	---	---	---	1.5	2.4
25	---	---	---	--	--	---	---	--	-	---	5.6	2.9
26	---	---	---	---	--	---	---	--	-	-	6.6	4.6
27	---	---	---	-	-	---	---	-	-	-	2.8	3.4
28	---	---	---	---	--	---	---	--	-	--	1.8	2.1
29	---	---	---	---	---	---	---	---	---	---	. 40	2.6
30	---	---	---	--	--	---	--	--	-	-	. 26	. 68
31	---	---	---	---	---	---	---	---	---	---	. 29	---
MEAN	---	---	---	-	-	---	---	---	--	---	---	2.0
MAX	---	---	---	---	---	---	---	---	---	---	---	4.6
MIN	---	---	---	---	---	---	---	---	---	---	---	. 20

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2300	3640	2570	5590	---	2180	8750	5140	3320	4190	5140	4880
2	1760		3230	6060	---	4950	6690	4350	3640	4790	5590	5090
3	2930	---	3980	7310	---	5620	6790	5300	3930	5020	5040	3830
4	-4630	---	4260	2770	---	3600	7940	5200	4360	5200	3910	2600
5	15600	---	4120	4080	---	4270	8170	5000	4010	2460	2750	2410
6	8870	---	4220	4410	---	5810	8370	4810	3100	9380	2480	3150
7	7520	---	5650	---	---	6160	7870	4720	2660	5070	2940	3030
8	6490	---	3480	---	---	4390	7890	4490	2840	2730	2420	3430
9	5630	---	6450	---	---	2360	8480	3990	4740	4980	2820	3610
10	5300	---	3820	---	---	1860	8250	---	4400	3300	3610	4860
11	6160	---	1830	4040	---	1430	7980	---	3290	2970	5360	4230
12	5070	---	3010	6150	---	2960	7820	---	3220	3290	6070	5010
13	4400	---	3220	5050	---	3390	8940	---	3390	4000	4330	4710
14	4170	---	4050	2090	2670	3000	8350	---	3240	4460	4040	5170
15	5270	---	3810	3450	3340	3470	9070	---	3690	4550	4040	5130
16	2660	---	2730	4090	6790	6220	9300	---	4050	4440	4180	5730
17	1820	---	2650	3400	1220	6360	7480	---	3990	4180	4400	4650
18	2370	---	1330	4030	5410	7310	7550	---	3420	3570	4310	4230
19	2820	---	4510	7110	5290	7100	7430	---	3700	3630	3660	3000
20	4940	---	7690	6340	6440	6830	7110	---	2890	3330	3550	3080
21	7080	---	4030	7240	4810	6190	6740	---	2510	3760	3070	2050
22	5500	---	4930	4290	4130	5010	6080	---	2390	---	3750	6500
23	5030	---	5130	3520	4070	4680	6480	---	2380	---	3160	4100
24	5980	---	4500	5640	3500	4780	5900	---	1830	---	4920	4980
25	5430	5640	4040	3460	3020	5920	5410	---	1900	---	3980	5330
26	5330	4630	4220	2470	2830	5490	5920	---	2890	---	4930	5500
27	5220	4740	4680	5260	2640	4830	5200	---	2720	---	5030	5550
28	6240	5150	4350	---	2530	6760	4150	---	3140	---	5120	5380
29	4010	4710	2890	---	---	5450	5010	---	2750	---	4580	5070
30	3110	3130	1420	---	---	5360	8530	---	3160	---	4230	5070
31	2930	---	1290	---	-	7650	---	---	---	---	4670	---
MEAN	4752	---	3809	---	---	4884	7322	---	3252	---	4132	4379
MAX	15600	---	7690	---	---	7650	9300	---	4740	---	6070	6500
MIN	-4630	---	1290	--	--	1430	4150	--	1830	-	2420	2050

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.29	5.56	4.37	5.82	---	4.27	4.82	3.95	4.81	5.07	5.44	5.33
2	5.50	---	4.48	5.71	---	4.57	3.84	4.35	5.02	5.12	5.36	5.36
3	6.15	---	4.63	4.90	---	3.95	4.40	4.76	5.28	5.28	5.32	5.32
4	8.03	---	4.61	4.11	---	4.08	5.01	4.94	5.36	5.47	5.12	5.18
5	7.01	---	4.67	4.51	---	4.84	5.10	4.94	5.21	5.94	5.07	5.17
6	5.86	---	4.68	4.68	---	5.33	5.37	5.01	5.01	5.52	5.08	5.34
7	5.55	---	4.97	---	---	5.51	5.00	4.94	5.07	4.98	5.07	5.21
8	5.13	---	4.59	---	---	3.59	5.07	4.94	5.32	5.03	5.07	5.23
9	4.83	---	4.89	---	---	2.98	4.92	4.86	5.89	5.24	5.07	5.40
10	5.40	---	3.45	---	---	2.84	4.14	---	5.47	4.75	5.25	5.45
11	5.53	---	3.44	4.63	---	2.58	4.21	---	5.51	4.62	5.49	5.43
12	5.16	---	4.17	4.76	---	3.61	4.73	---	5.37	4.67	5.70	5.37
13	5.39	---	4.59	3.54	---	4.38	5.13	---	5.27	4.99	5.34	5.31
14	5.81	---	4.89	4.44	4.77	4.48	5.16	---	5.15	5.23	5.24	5.29
15	4.67	---	4.77	4.53	4.97	4.78	5.11	---	5.24	5.10	5.29	5.45
16	4.07	---	5.05	4.54	4.28	5.09	4.64	---	5.30	5.00	5.16	5.98
17	4.27	---	4.95	4.78	3.59	5.19	4.39	---	5.17	5.11	5.19	5.86
18	4.85	---	5.46	5.23	4.39	5.60	4.93	---	5.21	4.91	5.21	5.46
19	5.42	---	6.12	4.86	4.98	5.70	5.06	---	5.29	4.98	4.95	5.06
20	5.59	---	4.82	3.91	5.10	4.53	4.98	---	5.29	4.92	5.01	5.03
21	4.85	---	4.46	4.18	4.43	4.06	4.81	---	5.14	5.05	4.89	5.51
22	4.85	---	4.57	3.75	4.56	4.18	4.81	---	5.04	---	5.22	5.39
23	5.28	---	4.39	4.40	4.57	4.40	4.94	---	4.91	---	5.31	4.87
24	5.33	---	4.04	5.18	4.53	4.61	4.45	---	4.76	---	5.27	5.24
25	5.46	4.61	4.36	3.73	4.34	5.03	4.63	---	4.70	---	5.23	5.38
26	5.67	4.69	4.59	4.94	4.37	4.65	4.91	---	4.44	---	5.14	5.56
27	6.08	5.23	4.73	4.70	4.51	4.95	4.55	---	4.41	---	5.30	5.47
28	5.81	5.36	4.60	---	4.62	5.10	4.45	---	4.35	---	5.33	5.45
29	4.23	5.14	4.04	---	---	4.66	5.06	---	4.38	---	5.15	5.39
30	4.61	4.02	4.80	---	---	4.61	5.29	---	4.67	---	5.17	5.23
31	5.15	---	5.32	---	---	4.84	---	---	---	---	5.26	---
MEAN	5.38	---	4.63	---	---	4.48	4.80	---	5.07	---	5.22	5.36
MAX	8.03	---	6.12	--	---	5.70	5.37	---	5.89	--	5.70	5.98
MIN	4.07	--	3.44	---	---	2.58	3.84	-	4.35	---	4.89	4.87

Water year 1996 discharges and gage heights are estimated.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.1	-	18.0	14.5	-	19.1	18.3	23.7	26.4	28.6	e29.0	26.9
2	26.3	---	18.0	16.1	---	18.1	18.7	23.7	25.8	28.9	28.0	26.6
3	26.5	---	18.3	16.4	---	18.1	19.2	24.3	25.9	28.7	27.3	26.5
4	27.1	---	18.6	e16.2	---	18.3	19.8	24.9	26.2	28.4	27.1	e26.7
5	---	---	19.0	15.9	---	18.4	20.3	25.3	26.6	28.2	e27.5	27.2
6	---	---	19.4	16.0	---	19.3	20.0	25.8	26.9	27.6	e27.9	27.5
7	---	---	19.7	---	---	19.9	19.5	26.0	27.4	27.1	e28.2	27.7
8	---	---	19.4	---	---	19.3	18.9	26.1	27.3	27.2	28.3	28.1
9	---	---	19.2	---	---	17.6	18.7	26.0	26.4	27.1	e28.4	28.2
10	-	---	18.6	---	---	16.1	18.7	---	26.2	26.8	28.8	27.9
11	---	---	16.9	---	---	14.8	18.6	---	26.6	27.3	28.4	27.5
12	---	---	15.8	---	---	14.5	18.7	---	27.2	27.8	27.2	27.4
13	---	---	15.8	---	---	15.1	19.1	---	27.7	28.4	27.0	27.6
14	---	---	16.4	---	---	15.9	19.8	---	28.3	28.6	27.1	27.3
15	---	---	17.1	---	16.8	16.7	19.7	---	28.3	28.8	27.4	27.4
16	---	---	17.7	---	16.7	17.7	19.3	---	27.3	28.8	27.7	27.2
17	-	---	18.1	15.4	15.4	18.5	19.4	---	26.9	28.6	27.8	27.1
18	---	---	18.6	16.3	14.6	18.9	19.8	---	27.2	28.7	27.8	27.4
19	-	---	18.9	---	15.0	18.1	20.4	---	27.4	29.1	27.7	27.1
20	---	---	18.0	---	15.7	16.6	21.1	---	27.3	29.2	27.8	26.9
21	---	---	16.8	---	17.2	16.1	21.9	---	27.6	---	27.7	26.6
22	---	---	15.6	---	17.6	16.1	22.6	---	28.1	-	27.8	26.3
23	---	---	15.0	---	18.3	16.6	23.0	---	28.4	---	28.0	25.9
24	---	---	14.6	---	19.2	17.2	23.1	---	28.9	---	28.1	25.8
25	--	17.2	13.6	---	20.4	18.0	22.9	---	29.3	---	28.0	25.8
26	---	17.2	13.2	---	20.9	18.6	23.0	---	29.7	---	27.6	25.8
27	---	17.3	13.2	-	21.1	18.6	23.3	--	29.7	--	27.7	26.0
28	--	17.7	13.2	---	21.3	18.4	23.9	---	29.2	---	27.9	26.4
29	---	18.2	13.1	---	20.9	18.5	24.5	---	28.7	---	28.1	26.4
30	---	18.3	13.0	---	---	18.4	24.3	--	28.3	--	27.6	26.2
31	-	---	13.5	---	---	18.1	---	---	---	---	27.1	
MEAN	---	---	16.7	---	---	17.6	20.7	---	27.6	---	27.8	26.9
MAX	--	---	19.7	---	---	19.9	24.5	---	29.7	---	29.0	28.2
MIN	---	---	13.0	---	---	14.5	18.3	---	25.8	---	27.0	25.8

SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.2	---	. 41	3.9	---	. 27	. 07	. 13	1.5	4.1	---	. 76
2	1.9	---	. 91	1.5	---	. 58	. 07	. 15	1.7	3.6	. 86	. 57
3	4.0	-	. 93	. 80	---	. 21	. 06	. 42	2.5	3.8	. 57	. 52
4	17.7	---	. 94	e. 28	---	. 22	. 10	. 35	2.2	2.6	. 29	. 27
5	e14.0	---	1.2	1.2	---	1.7	. 07	. 31	1.1	4.5	---	. 18
6	-	---	1.3	. 94	---	1.9	. 09	. 26	. 41	. 54	---	. 43
7	---	---	2.4	---	---	1.8	. 05	. 22	. 24	. 24	---	. 21
8	---	---	. 52	---	---	. 17	. 05	. 13	. 23	. 20	. 28	. 28
9	-	---	2.7	---	---	. 19	. 05	. 12	1.1	. 21	--	. 41
10	---	---	. 21	---	---	. 15	. 05	---	. 19	. 18	1.2	. 78
11	-	---	. 43	---	---	. 16	. 05	---	. 23	. 17	. 88	. 73
12	---	---	1.4	---	---	. 17	. 05	---	. 26	. 25	. 68	1.2
13	---	---	1.5	---	---	. 21	. 05	---	. 28	. 23	. 32	1.6
14	-	--	1.1	---	--	. 25	. 06	---	. 58	. 34	. 34	1.6
15	-	---	. 81	---	. 54	. 52	. 06	---	1.1	. 37	. 79	1.5
16	---	---	1.4	---	. 43	. 31	. 07	---	. 89	. 38	. 78	2.4
17	-	-	1.8	1.9	. 64	. 32	. 07	---	. 68	. 29	. 66	1.4
18	---	---	3.7	2.9	2.6	. 76	. 09	---	1.4	. 18	. 38	1.0
19	---	---	5.4	---	2.5	1.7	. 08	---	. 51	. 18	. 22	. 21
20	-	---	2.4	---	2.1	. 61	. 08	-	. 34	. 19	. 52	. 50
21	---	---	1.1	---	. 27	. 13	. 09	---	. 24	---	. 23	2.5
22	---	---	2.2	---	. 45	. 12	. 09	---	. 21	---	. 88	. 51
23	---	---	2.0	---	. 25	. 11	. 09	---	. 19	---	. 60	. 34
24	---	---	1.1	---	. 20	. 10	. 10	---	. 18	---	. 35	1.9
25	---	2.5	1.8	---	. 17	. 24	. 10	---	. 22	---	. 94	2.7
26	---	1.1	2.0	---	. 16	. 08	. 11	---	. 25	---	. 67	3.8
27	---	2.2	1.6	---	. 15	. 07	. 11	---	. 39	--	1.7	2.4
28	---	1.0	. 95	---	. 16	. 07	. 12	-	. 90	-	2.3	2.1
29	---	. 24	. 85	---	. 16	. 07	. 12	---	1.0	---	1.7	2.1
30	-	. 19	3.0	---	---	. 07	. 31	---	2.5	--	1.6	1.2
31	---	---	4.2	---	---	. 07	---	---	---	---	1.2	---
MEAN	---	---	1.7	---	---	. 43	. 09	-	. 78	---	---	1.2
MAX	-	---	5.4	---	---	1.9	. 31	---	2.5	---	---	3.8
MIN	---	---	. 21	---	---	. 07	. 05	---	. 18	---	---	. 18

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e4270	e6270	7610	5360	8000	13000	---	5140	7310	5100	4370	5160
2	e3920	e8430	8400	5600	8400	13100	---	6190	6190	5450	5130	5520
3	e3060	e6620	5530	5440	8260	13200	--	8000	5810	5480	5780	5320
4	e2640	e4880	5270	4800	7150	13200	---	9180	6190	5650	5630	6500
5	e957	e5390	5060	6800	8980	12300	---	7050	5340	6740	6820	---
6	e1940	e6660	5640	6880	9290	14200	---	7310	4580	6540	e6280	---
7	e-2040	e6490	8170	7280	9170	13200	---	7970	4720	5010	e6470	---
8	e16800	10600	8560	6060	10800	11900	---	7520	5010	5100	---	---
9	e9170	7370	6820	8330	9300	12500	---	7540	4530	4520	---	---
10	e9430	7260	6990	9610	8930	11700	---	7570	4130	4870	---	---
11	e9530	7330	7830	8950	8660	12000	---	6310	5060	5230	---	
12	e9660	6790	7930	7120	8780	13200	---	5860	4720	4970	---	---
13	e8830	6390	7910	6410	8550	11800	---	6750	5870	4590	---	---
14	e9230	5740	7010	6110	9960	13000	---	6020	6360	4680	---	---
15	e9480	4440	6840	6110	10600	14700	---	5790	6510	4220	7470	---
16	e9950	3280	6630	8570	7490	13200	3980	5710	4810	4630	7430	---
17	e10100	6010	7690	6530	7540	11200	4590	4860	5120	4950	7440	---
18	e10300	6280	6730	6310	7040	11000	3850	5110	6400	5330	7380	---
19	e10400	6930	8040	5280	7940	10800	5210	4980	5600	6390	7320	---
20	e8960	6950	4440	8470	9000	---	5810	5550	4890	6610	7120	---
21	e10400	7780	4920	8630	10600	---	6280	5510	4910	5980	7410	---
22	e9650	7890	4200	8480	12300	---	6470	5140	4890	5110	6770	---
23	e10400	5790	6620	8980	11500	---	5720	5230	4980	5110	6610	---
24	e10100	7080	7850	9100	10400	---	6020	5410	5350	4820	6600	---
25	e9550	7460	8040	9350	10400	---	4990	5610	4610	4400	5270	---
26	e9820	10500	6170	8330	10700	---	4550	5120	4260	3930	4920	---
27	e9120	7200	7840	7480	12000	---	7390	4370	4100	4260	4610	---
28	e8490	4650	6770	7700	12700	---	7400	3510	3700	4870	5250	---
29	e7750	4950	6990	7680	---	---	8000	3140	3960	3960	5870	---
30	e7510	6420	6050	7420	---	---	5600	3730	4560	4250	5340	---
31	e7430	---	5590	7390	---	---	---	4290	---	4690	5350	---
MEAN	7962	6661	6779	7308	9444	---	---	5854	5149	5079	---	---
MAX	16800	10600	8560	9610	12700	---	---	9180	7310	6740	---	---
MIN	-2040	3280	4200	4800	7040	---	-	3140	3700	3930	---	---
e Est	mated											

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.06	5.46	6.10	4.57	4.75	5.27	4.16	5.14	5.77	4.98	5.03	5.19
2	5.17	5.33	4.60	4.56	4.83	5.25	4.62	5.20	5.33	5.11	5.35	5.26
3	4.94	3.83	4.36	4.69	4.76	5.46	4.97	5.55	5.22	5.08	5.47	5.39
4	4.41	4.49	3.88	4.82	5.02	5.20	5.39	4.66	5.22	5.32	5.58	5.33
5	4.27	5.17	4.83	5.12	4.93	5.23	5.65	4.37	4.91	5.37	5.53	-
6	4.70	5.20	4.85	4.95	4.91	4.96	5.60	5.24	4.87	5.49	5.35	-
7	6.85	5.40	5.32	4.89	5.09	4.56	5.37	5.24	4.82	5.19	5.13	-
8	6.63	5.68	4.50	4.90	5.28	5.31	4.70	5.45	4.70	4.90	4.88	---
9	5.33	4.40	4.06	5.60	4.57	5.39	4.72	5.36	4.84	5.09	4.97	---
10	4.95	4.67	4.45	4.62	4.71	5.66	4.68	4.99	4.92	5.20	4.89	---
11	4.83	4.43	4.96	4.69	4.47	5.60	5.22	4.75	4.85	5.11	4.90	-
12	4.56	4.13	5.10	4.07	4.80	5.39	5.76	5.36	5.26	5.04	5.02	-- -
13	4.65	4.17	4.93	3.69	5.24	5.82	4.99	5.23	5.57	5.04	5.04	---
14	5.02	4.21	4.43	3.86	5.49	6.16	3.80	4.85	5.63	5.05	5.23	-
15	5.42	3.61	4.50	4.66	4.47	5.14	3.79	4.85	5.46	5.08	5.40	-
16	5.58	4.33	4.84	5.04	3.62	4.32	4.23	4.64	5.10	5.03	5.37	---
17	5.61	5.29	5.59	3.51	3.52	4.74	4.78	4.75	5.21	5.09	5.42	---
18	5.63	5.53	4.94	3.54	4.18	5.20	4.05	4.74	5.43	5.28	5.45	---
19	4.41	5.57	3.90	4.33	4.72	5.41	4.78	5.03	5.24	5.56	5.53	---
20	5.49	5.61	3.29	4.51	4.95	5.58	5.01	5.03	4.94	5.74	5.50	-
21	5.63	5.66	3.48	4.59	5.48	5.52	5.32	4.92	5.10	5.50	5.59	---
22	5.87	4.86	3.98	4.82	5.49	5.30	5.59	4.88	5.05	5.32	5.32	---
23	6.02	4.95	4.63	4.87	4.54	5.17	6.10	4.97	5.13	5.45	5.08	---
24	5.57	5.45	4.95	5.00	4.26	4.87	4.86	5.31	5.20	5.36	5.03	---
25	5.84	5.94	4.34	5.09	4.53	5.20	5.11	5.56	5.06	5.23	4.76	-- -
26	5.94	5.09	4.62	4.20	5.29	5.43	5.26	5.34	4.97	5.13	4.72	---
27	5.58	3.89	4.70	4.55	5.65	5.13	5.79	5.03	4.95	5.24	5.04	---
28	5.54	3.93	4.65	4.85	5.41	5.33	6.37	4.43	4.96	5.18	5.28	---
29	5.63	4.54	4.70	4.61	---	5.36	5.31	4.61	5.07	5.07	5.28	---
30	5.38	5.50	4.49	4.37	---	5.24	4.93	4.72	5.01	5.15	5.21	---
31	5.16	-	4.51	4.26	---	4.64	---	5.04	-	5.19	5.32	---
MEAN	5.34	4.88	4.60	4.58	4.82	5.25	5.03	5.01	5.13	5.21	5.22	-
MAX	6.85	5.94	6.10	5.60	5.65	6.16	6.37	5.56	5.77	5.74	5.59	-
MIN	4.27	3.61	3.29	3.51	3.52	4.32	3.79	4.37	4.70	4.90	4.72	-

Gage heights for Oct. 1 to Nov. 7 and Mar. 23 to Apr. 15 are estimated.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.1	22.8	18.9	18.4	15.7	18.4	---	23.2	25.2	---	27.4	27.0
2	25.8	22.8	18.7	18.6	15.9	18.4	---	23.6	25.1	---	26.8	27.0
3	25.3	21.7	18.6	18.8	16.1	18.6	---	24.0	25.4	28.8	27.2	27.4
4	24.8	20.6	18.2	19.1	16.3	19.2	---	23.7	25.7	29.0	27.6	27.2
5	23.8	20.8	17.8	19.4	16.6	20.2	---	23.2	25.4	27.9	27.7	e26.6
6	23.3	21.2	17.9	19.8	16.7	20.4	---	23.1	24.8	27.2	28.1	26.3
7	22.8	21.7	18.2	20.0	16.6	19.7	---	23.2	24.2	27.6	28.4	26.4
8	22.4	21.8	17.9	19.7	17.0	19.9	-	23.4	24.3	28.1	27.6	26.5
9	22.0	20.6	17.4	19.5	16.5	20.5	---	23.7	23.9	27.9	27.4	26.4
10	22.0	19.7	17.1	17.9	16.2	20.7	---	23.6	23.9	27.2	27.6	26.3
11	21.8	19.1	16.7	16.9	16.0	20.8	---	23.3	24.3	27.2	27.7	26.5
12	21.7	18.3	17.0	16.6	16.0	20.8	-- -	22.9	25.0	27.6	28.0	26.7
13	21.3	17.9	17.6	15.8	16.3	20.9	---	22.9	25.5	27.7	28.3	27.0
14	21.3	18.1	17.6	15.4	17.2	20.8	---	23.3	26.1	28.2	28.4	27.3
15	21.3	18.1	17.5	15.4	17.6	20.7	-	23.7	26.5	28.6	28.5	27.6
16	21.1	17.5	17.4	15.5	16.8	20.3	20.7	23.9	26.8	28.7	28.6	27.8
17	21.3	17.7	17.3	14.4	16.6	19.9	21.3	24.3	27.4	28.5	28.5	27.3
18	21.5	18.3	17.0	13.2	16.6	20.1	20.8	24.6	27.6	28.2	28.1	27.5
19	20.9	18.8	15.5	12.5	16.6	20.6	20.7	25.0	27.5	27.4	28.3	27.6
20	20.2	19.3	14.2	12.1	17.2	-	20.9	25.3	27.2	27.2	28.7	27.7
21	20.0	19.8	13.5	12.0	17.7	---	21.6	25.6	27.4	27.8	28.5	27.8
22	20.1	20.1	13.6	12.7	17.6	---	22.1	25.9	27.6	28.1	28.2	27.8
23	20.5	19.1	14.3	13.2	16.9	---	e22.3	25.5	27.7	28.1	27.6	27.5
24	20.6	19.0	15.1	13.9	16.6	-- -	22.1	25.5	27.1	28.1	27.3	27.6
25	21.0	19.3	15.9	14.4	16.4	---	22.6	25.6	27.1	28.4	27.3	27.5
26	21.7	19.6	16.3	14.0	16.8	---	22.9	25.8	---	28.4	27.2	---
27	22.0	18.9	16.8	14.3	17.7	-- -	22.7	26.2	- - -	28.1	27.0	---
28	22.1	18.3	17.3	15.1	18.2	---	22.8	25.9	-	27.8	27.2	---
29	22.4	18.3	17.5	16.0	---	--	22.7	25.7	- - -	27.7	27.4	26.1
30	22.6	18.8	17.9	16.1	---	-	23.0	25.4	--	28.0	27.6	26.3
31	22.7	-	18.1	15.6	---	---	---	25.4	---	28.2	27.4	---
MEAN	22.1	19.6	16.9	16.0	16.7	---	---	24.4	---	---	27.8	-
MAX	26.1	22.8	18.9	20.0	18.2	-	---	26.2	---	---	28.7	-
MIN	20.0	17.5	13.5	12.0	15.7	---	---	22.9	---	---	26.8	---

e Estimated
SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 48	. 12	. 75	. 13	. 08	. 04	-	. 14	. 27	---	. 14	. 22
2	. 52	. 12	. 17	. 12	. 08	. 04	---	. 14	. 16	---	. 97	. 80
3	. 24	. 13	. 17	. 12	. 08	. 04	---	. 15	. 15	. 20	. 41	. 91
4	. 23	. 13	. 17	. 19	. 09	. 05	---	. 09	. 19	. 43	. 27	. 38
5	. 28	. 13	. 51	. 16	. 11	. 05	---	. 07	. 21	. 14	. 17	. 19
6	. 41	. 16	. 72	. 15	. 15	. 05	---	. 20	. 15	. 14	. 13	. 15
7	6.0	. 37	. 47	. 19	. 13	. 05	---	. 09	. 14	. 10	. 11	. 17
8	11.0	1.1	. 28	. 27	1.1	. 05	---	. 21	. 13	. 09	. 08	. 36
9	. 78	. 15	. 19	2.7	. 08	. 05	-	. 09	. 11	. 10	. 07	. 26
10	. 37	. 16	. 34	2.0	. 08	. 05	---	. 08	. 11	. 09	. 06	. 18
11	. 24	. 15	. 81	1.1	. 08	. 05	---	. 08	. 11	. 10	. 06	. 20
12	. 16	. 15	1.1	. 15	. 08	. 05	---	. 09	. 11	. 10	. 06	. 27
13	. 10	. 16	. 95	. 14	. 37	. 06	---	. 10	. 12	. 10	. 06	. 42
14	. 09	. 16	. 18	. 13	. 09	. 06	---	. 11	. 12	. 10	. 07	1.4
15	. 09	. 16	. 17	. 12	. 09	. 07	--	. 11	. 19	. 10	. 08	2.4
16	. 09	. 25	. 21	. 12	. 09	. 08	. 13	. 12	. 12	. 10	. 10	3.2
17	. 08	1.1	. 60	. 10	. 10	. 09	. 13	. 12	. 13	. 12	. 59	2.5
18	. 09	. 92	. 17	. 09	. 10	. 09	. 13	. 13	. 15	. 31	. 70	2.3
19	. 06	. 42	. 15	. 08	. 09	. 09	. 15	. 13	. 16	. 68	. 76	1.2
20	. 06	. 60	. 14	. 09	. 08	---	. 19	. 14	. 14	. 61	. 57	. 89
21	. 07	. 63	. 14	. 09	. 08	---	. 26	. 16	. 38	. 48	. 25	. 71
22	. 09	. 43	. 16	. 09	. 07	---	. 39	. 16	. 34	. 50	. 11	. 46
23	. 14	. 42	. 28	. 10	. 05	---	---	. 33	. 56	. 57	. 09	. 28
24	. 10	1.9	. 95	. 10	. 05	---	. 15	. 89	. 21	. 20	. 09	. 39
25	. 45	3.4	. 33	. 26	. 05	---	. 35	. 52	. 17	. 14	. 09	. 25
26	. 42	1.7	. 17	. 09	. 05	---	. 16	. 19	--	. 13	. 09	---
27	. 17	. 20	. 42	. 09	. 05	---	. 17	. 16	--	. 14	. 11	---
28	. 17	. 19	. 18	. 09	. 05	---	. 20	. 15	---	. 12	. 14	---
29	. 14	. 20	. 16	. 09	---	---	. 13	. 16	---	. 13	. 12	. 20
30	. 16	. 98	. 14	. 09	---	---	. 13	. 17	--	. 13	. 14	. 32
31	. 13	---	. 13	. 09	---	---	--	. 22	---	. 17	. 31	---
MEAN	. 76	. 56	. 36	. 30	. 13	---	---	. 18	---	---	. 23	---
MAX	11.0	3.4	1.1	2.7	1.1	-	---	. 89	---	---	. 97	---
MIN	. 06	. 12	. 13	. 08	. 05	---	---	. 07	---	---	. 06	---

Water year 1998 gage heights are estimated.
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	-	--	--	17.3	20.0	21.9	--	---	---	27.3
2	---	---	---	---	---	16.7	20.5	22.7	---	---	---	27.5
3	--	---	-	-	---	16.1	20.8	---	---	---	---	27.6
4	--	-	-	-	---	15.8	21.2	-	---	---	---	27.6
5	---	---	---	---	---	15.6	20.9	---	---	---	---	27.2
6	--	---	---	---	---	16.1	20.5	--	---	---	---	26.5
7	--	-	---	-	---	16.6	20.7	-	---	---	---	26.0
8	---	---	---	---	---	17.1	21.1	--	---	---	---	26.2
9	---	---	---	---	---	17.3	21.1	---	---	---	---	26.7
10	---	---	---	---	---	16.0	20.4	-	---	---	---	26.8
11	--	---	---	---	--	15.4	19.8	---	---	---	---	26.8
12	---	---	---	---	13.2	14.9	19.9	---	---	---	---	27.4
13	---	---	---	-	12.8	14.4	20.2	---	---	--	--	27.7
14	---	---	---	---	12.5	14.5	20.5	---	---	---	---	28.0
15	---	---	---	---	12.8	14.8	20.8	---	---	---	---	27.9
16	-	---	---	---	14.0	15.2	21.1	--	---	---	-	27.8
17	---	---	---	---	15.4	15.6	20.9	---	---	---	---	27.6
18	---	---	---	---	15.4	16.0	21.0	---	---	---	---	27.7
19	---	---	---	---	15.2	---	20.8	---	---	---	---	27.9
20	---	---	-	-	15.5	---	20.5	--	---	---	---	27.8
21	--	---	---	---	15.9	-	20.5	---	---	---	---	27.6
22	--	---	---	---	16.2	---	20.6	--	---	---	---	27.8
23	---	---	---	---	15.9	---	21.1	---	---	---	---	28.1
24	-	---	---	---	15.5	---	21.0	--	---	---	27.6	27.5
25	---	---	-	-	15.9	16.2	21.3	-	-	-	27.7	26.5
26	---	---	---	---	16.2	16.8	21.6	-	---	---	28.1	26.6
27	--	---	---	---	16.9	17.4	21.9	--	--	---	28.4	26.4
28	---	---	---	---	17.3	17.9	21.8	---	--	---	28.6	26.2
29	--	-	-	---	,	18.5	21.5	-	---	---	28.1	26.2
30	--	---	-	-	---	18.9	22.2	--	-	---	27.7	26.1
31	---	--	-	-	---	19.5	---	---	---	---	27.4	---
MEAN	---	---	---	---	---	-	20.9	---	---	---	---	27.2
MAX	---	---	---	---	---	---	22.2	---	---	---	---	28.1
MIN	---	---	-	-	---	---	19.8	---	---	---	---	26.0

SUWANNEE RIVER BASIN
291930083082800 WEST PASS SUWANNEE RIVER AT SUWANNEE, FL--Continued
SALINITY (PARTS PER THOUSAND), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP
1	. 37	e. 10	---	---	---	---	---	---	---	---	-	1.6
2	---	---	---	---	---	---	---	---	---	---	---	1.9
3	---	---	---	---	---	---	---	---	---	---	---	. 78
4	-	---	---	---	--	---	---	---	---	---	--	1.1
5	--	---	---	---	---	---	---	---	--	---	--	1.5
6	---	---	---	---	---	. 10	---	---	---	---	---	2.0
7	---	--	-	---	---	. 10	---	---	--	--	--	3.7
8	---	--	---	---	--	. 10	--	---	---	---	---	4.0
9	-	-	---	---	---	. 10	---	---	---	--	---	3.7
10	---	---	---	---	---	. 10	---	---	---	---	---	2.7
11	---	---	---	---	---	. 10	---	---	---	---	---	1.5
12	---	---	---	---	---	. 10	---	---	---	---	--	1.9
13	---	--	-	---	-	. 10	---	---	--	--	---	. 82
14	---	---	---	---	---	. 10	---	---	---	---	---	1.2
15	---	---	---	---	---	. 10	---	---	---	---	---	. 61
16	---	---	---	---	---	. 10	---	---	---	---	---	. 63
17	---	---	--	---	--	. 10	---	---	--	---	--	. 64
18	. 36	---	--	---	--	. 10	--	---	--	--	--	. 19
19	. 19	---	---	---	---	---	---	---	---	---	---	. 99
20	. 17	---	---	---	---	---	---	---	---	---	---	1.4
21	. 25	---	---	---	---	---	---	---	---	---	---	1.2
22	. 22	---	--	---	--	---	--	--	--	--	--	3.5
23	. 35	--	--	--	-	---	---	-	-	---	---	3.8
24	. 41	---	---	---	---	---	---	--	--	--	1.5	2.4
25	1.3	---	---	---	---	. 14	---	---	---	---	5.6	2.9
26	1.4	---	---	---	---	. 14	---	---	---	---	6.6	4.6
27	2.4	---	---	---	---	. 14	--	--	--	--	2.8	3.4
28	. 21	--	---	---	---	. 14	---	---	---	---	1.8	2.1
29	5.1	---	---	---	---	. 15	-	-	---	--	e. 40	2.6
30	. 22	---	---	---	--	. 15	--	--	--	---	. 26	. 68
31	. 17	--	---	---	---	---	---	---	---	-	. 29	---
MEAN	---	---	---	---	---	---	---	--	---	---	--	2.0
MAX	---	---	---	---	---	---	---	---	---	---	---	4.6
MIN	---	---	---	---	---	---	---	---	---	---	---	. 19

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	6880		---		4250	2350	1660	2130	2340	1570
2			5740	5700			3810	2330	1520	2050	2610	2030
3			6460	9800	---	---	3350	2040	1880	1650	2440	1650
4			6990	5770		---	2170	1850	1780	1630	1660	1330
5	---	---	6990	3770	---	---	2850	1780	1990	1830	1170	2220
6	---	---	6660	3440	---	4210	2660	2230	1110	1720	1610	2630
7	---	---	6520	e4710	---	4520	2160	1390	1210	1790	3360	3110
8			e6100	e4620		3410	2790	2760	1280	1900	3110	1950
9			e4810	5100		2170	1800	2130	1950	2790	3100	2920
10	---	---	e4260	e4970	---	e5780	3000	2140	1980	2680	2730	2100
11	---	---	e3100	e2670		4210	2400	2350	2420	e2470	2860	2140
12	---	---	e2930	e1640	---	3570	3520	2530	2640	e2520	2980	2240
13	---	4950	5690	e4190	---	930	2890	2970	1840	2280	2290	1790
14		6550	6080	e5080		4070	2410	2730	1950	2050	2220	1900
15	---	7470	e3060	e6740		7060	2570	3230	1690	1920	2440	626
16	---	6420	e3350	e5460	---	3630	5200	1980	e1870	2100	2280	1170
17	---	7660	5660	e7260	---	---	3110	1750	e2190	2240	2110	1640
18	---	7110	4310	e6630	---	---	2810	1370	2330	1910	1840	179
19	---	6390	6840	e5470	---	---	2510	1690	1320	2250	1930	-482
20	---	7310	6430	e6660		---	2100	2130	1150	2260	2480	2420
21	---	7480	6510	e6320	---	---	2380	1520	1600	e2590	1960	3930
22		4760	6140	e4730		---	2070	1840	1870	e3020	2350	2930
23	---	5620	e5410	---	---	---	2670	1440	1650	e2140	2400	2120
24	---	e5210	6050	---	---	3210	2120	2160	2250	e3710	2370	1860
25		e5490	4910	---	---	2650	2880	2980	2380	e3760	2710	2190
26	---	e5100	4520	---	---	3930	1570	2440	1890	e3450	2370	2090
27		e5380	3860	---	---	3560	2930	2560	2210	e2740	2490	2530
28		e5320	1900	---		2520	3090	2460	2320	2270	2200	2370
29	---	4860	---	---	---	3300	3510	2430	2180	2340	2210	2100
30	---	6110	e5960	---	---	3820	2960	1910	2420	2620	2080	2420
31			5190	---	---	2500	---	1570	---	2150	2280	
MEAN	---	---	---	---	---	---	2818	2163	1884	2354	2354	1989
MAX	---	---	---	---	---	---	5200	3230	2640	3760	3360	3930
MIN	---	---	---	---	---	---	1570	1370	1110	1630	1170	-482

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---		5.54	5.27	5.99	5.90	5.92	4.64	5.51	5.56	5.62	5.60
2	---	---	5.42	6.22	6.06	6.24	5.41	4.95	5.53	5.27	5.56	5.44
3	---	---	5.73	5.72	5.88	6.80	5.32	5.38	5.40	5.22	5.51	5.50
4			5.81	4.65	e5.72	5.32	5.44	5.74	5.19	5.32	5.34	5.69
5	---	---	5.78	4.21	5.28	5.80	5.29	6.26	5.00	5.37	5.68	5.98
6	---	---	5.82	4.59	5.28	6.15	5.21	6.20	5.14	5.34	5.93	6.22
7	---	---	5.95	e5.15	e5.68	5.66	5.27	6.08	5.02	5.47	6.01	5.96
8	---	---	e5.67	e5.48	e5.71	5.12	5.21	5.81	5.15	5.61	5.84	5.89
9	---	---	e5. 25	5.65	e5.56	6.65	5.62	5.53	5.20	5.66	5.91	5.85
10	---	---	e5.03	e4.41	e5.34	e6.16	5.58	5.49	5.34	5.53	6.02	5.77
11	---	---	e4.93	e4.30	e5.33	5.65	5.50	5.52	5.35	e5.60	6.04	5.76
12	---	---	e5.40	e5.01	5.43	5.56	5.10	5.50	5.42	e5.69	5.55	5.49
13	---	5.66	5.97	5.61	e4.28	6.09	4.77	5.73	5.47	5.76	5.44	5.25
14	---	6.08	4.73	5.74	e4.15	7.22	5.53	6.08	5.68	5.66	5.73	4.64
15	---	6.01	e4.62	5.63	4.81	5.65	6.89	5.43	5.56	5.64	5.83	4.78
16	---	6.06	e4.76	5.28	5.55	5.17	5.60	5.44	e5. 64	5.57	5.69	5.65
17	---	5.91	5.08	5.57	6.08	---	5.33	5.37	e5.85	5.48	5.35	5.53
18	---	5.75	4.99	5.81	6.30	---	4.67	5.54	5.19	5.50	5.60	5.91
19	---	5.58	5.75	5.48	e6.02	---	4.91	5.70	4.86	5.33	5.66	6.73
20	---	5.65	5.53	5.49	5.13	---	5.16	5.59	5.06	5.20	5.78	6.89
21	---	5.51	5.59	5.66	5.12	---	5.19	5.40	5.19	e5.11	5.60	6.22
22	---	5.05	5.62	e6.07	4.23	---	5.58	5.38	4.98	e5.10	5.58	5.40
23	---	5.50	e5.40	6.35	5.09	---	5.28	5.37	5.10	e5.30	5.69	5.46
24	---	e5.38	5.61	5.40	5.08	5.46	5.12	5.61	5.24	e5.66	5.71	5.83
25	---	e5.60	5.31	e4.62	e5.12	5.66	5.08	5.43	5.28	e5.66	5.68	6.13
26	---	e5.22	5.13	e4.93	e5.36	5.38	5.35	5.39	5.35	e5.54	5.61	6.22
27	---	e5.14	4.97	e5.27	5.64	4.85	5.95	5.30	5.63	e5.50	5.62	6.19
28	---	e5.25	5.41	5.57	6.47	5.06	5.91	5.28	5.60	5.61	5.62	5.96
29	---	5.55	6.04	e5.61	---	5.24	5.68	5.24	5.73	5.76	5.70	6.11
30	---	5.82	e5.22	e5.61	---	5.32	5.09	5.21	5.67	5.67	5.79	5.82
31	---	-	5.25	5.40	---	5.75	---	5.43	---	5.74	5.37	
MEAN	---	---	5.40	5.35	5.42	---	5.40	5.52	5.34	5.50	5.68	5.80
MAX	---	---	6.04	6.35	6.47	---	6.89	6.26	5.85	5.76	6.04	6.89
MIN	---	---	4.62	4.21	4.15	---	4.67	4.64	4.86	5.10	5.34	4.64

TEMPERATURE，WATER TOP（DEG．C），WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	－－－	－－－	－－－	－－－	－－－	－－－	22.1	22.8	27.0	27.1	30.7	29.0
2	－－－	－－－	－－－	－－－	－－－	－－－	22.8	22.4	27.2	26.9	30.4	28.9
3	－	－	－	－－－	－－－	－	23.6	22.6	－	27.0	29.7	29.0
4	－－－	－－－	－－－	－－－	－－－	－－－	24.0	22.9	－－－	27.2	29.5	29.1
5	－	－－－	－－－	－－－	－－－	17.8	24.5	23.2	－	27.7	29.6	29.3
6	－－－	－－－	－	－－－	－－－	18.2	25.0	23.9	－	28.1	29.9	29.1
7	－－－	－－－	－－－	－－－	－－－	18.9	25.4	24.1	－－－	28.3	29.3	28.9
8	－	－－－	－	－－－	－－－	18.7	25.4	24.3	－－－	28.8	28.7	28.7
9	－－－	－－－	－－－	－－－	－－－	18.0	25.3	25.0	－－－	29.1	28.1	28.9
10	－－－	－－－	－－－	－－－	－－－	18.7	25.2	25.3	－－－	28.8	28.2	28.6
11	－－－	－－－	－	－－－	－－－	18.9	25.3	25.5	－	－－－	28.4	28.6
12	－－－	－－－	－－－	－－－	－－－	19.1	25.3	25.5	－－－	－－－	28.8	28.3
13	－	－－－	－－－	－－－	－－－	19.0	24.6	25.8	－－－	29.0	29.5	28.0
14	－	－－－	－－－	－－－	－－－	19.1	24.3	26.0	－－	29.1	29.6	27.9
15	－	－	－－	－－－	－－－	18.3	24.2	25.8	－－－	29.1	28.6	27.5
16	－－－	－	－－－	－－－	－－－	18.3	23.6	25.8	－－	29.3	28.7	27.3
17	－	－－－	－	－－－	－－－	兂	22.3	25.9	－－	29.2	28.9	27.1
18	－－－	－－－	－－－	－－－	－－－	－－－	21.8	26.0	－－－	29.1	29.0	27.1
19	－	－－－	－－－	－－－	－－－	－－－	21.5	26.7	－－－	29.3	29.2	27.1
20	－	－－－	－－－	－－－	－－－	－－－	21.8	26.8	－－－	29.6	28.7	26.9
21	－－－	－－－	－－－	－－－	－－－	－－－	22.4	26.9	－－－	－－－	28.2	26.5
22	－	－－－	－－	－－－	－－－	－－－	22.9	26.7	－－－	－－	28.5	25.6
23	－－－	－－－	－－－	－－－	－－－	－－－	23.7	26.7	－－－	－－－	28.6	24.9
24	－	－－－	－	－－－	－－－	20.9	24.4	26.6	－	－－－	28.8	24.8
25	－－－	－	－	－－－	－－－	21.1	25.0	26.8	27.8	－－－	29.1	25.2
26	－－－	－－－	－－－	－－－	－－－	21.1	25.4	27.1	27.8	－－－	29.5	25.5
27	－－－	－	－－－	－－－	－－－	20.8	25.9	27.4	27.7	－－－	29.8	25.7
28	－－－	－	－－	－－－	－－－	20.8	26.0	27.7	27.4	30.5	29.9	26.3
29	－－－	－－－	－－－	－－－	－－－	21.1	25.7	27.8	27.2	30.4	30.0	27.0
30	－－－	－	－－－	－－－	－	21.4	24.6	27.4	27.0	30.4	30.1	26.8
31	－	－	－－－	－－－	－－－	21.4		27.0	，	30.5	29.6	
MEAN	－－－	－－－	－－－	－－－	－－－	－－－	24.1	25.6	－－－	－－	29.2	27.5
MAX	－－－	－－－	－－－	－－－	－－－	－－－	26.0	27.8	－－－	－－－	30.7	29.3
MIN	－	－－－	－－－	－－－	－	－	21.5	22.4	－－－	－－－	28.1	24.8

TEMPERATURE，WATER MIDDLE（DEG．C），WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

各胥胥	${ }_{\sim}^{\omega}$	N		宁卢官守号	ド○ 0 ソの	$\cdots ゅ\left(\begin{array}{l}\text { c }\end{array}\right.$	易
$\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{l:l} : & \underset{\sim}{\sim} \underset{ }{\sim} \\ : & 1 \\ : & \infty \\ \hline \end{array}$	NNNN $\mapsto ゅ ゅ ゅ G$ ル ป $\infty ン 0$	N N N N N जのののの $\rightarrow i$ i i i	N NNN のンののの 	$\stackrel{\mathrm{O}}{\mathrm{H}}$
1 1 1 1	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$		NNNN $\infty \dot{\cos } \dot{\omega} \dot{\square}$	NN NNO	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1	$\stackrel{3}{3}$
$\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	炅
$\begin{array}{lll} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	空
$\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$		$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	雷
$\stackrel{\rightharpoonup}{\vee} \stackrel{\rightharpoonup}{\bullet}$ $\infty \oplus i$		NNNN $\dot{\omega}$ ir $\dot{\omega} \dot{\omega}$		$\stackrel{\rightharpoonup}{\infty} \stackrel{\rightharpoonup}{6} \stackrel{\rightharpoonup}{6} \stackrel{\rightharpoonup}{\circ} \stackrel{+}{\infty}$ へへ○○	$\stackrel{\rightharpoonup}{\bullet} \stackrel{+}{\infty} \stackrel{+}{\infty} \stackrel{\rightharpoonup}{\infty} \stackrel{\rightharpoonup}{\infty}$ vo ir 6 is	∞ ம்の் ω	暘
$\begin{array}{lll} 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{lllll} 1 & 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{l:l:l} : & : & N \\ & : & \\ 1 & 1 & \omega \end{array}$	NNNN $ッ ト \vdash N \omega$ ・ゅí i	NNNNN ゅゅルV $\dot{N} \dot{\omega}$ is $\dot{\omega} \dot{\omega}$	NNNN जGGMG $\dot{\omega} \omega$ is ω	NNNN －WNN 	劳
$\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{llllll} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & \\ 1 & 1 & 1 & 1\end{array}$	蜀
$\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	C
$\begin{array}{ll} 1 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & & & \\ \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	${ }_{4}^{C}$
$\begin{array}{ll} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\stackrel{\text { 穴 }}{\text { R }}$
$\begin{array}{lll}1 & 1 & \\ & 1 & 1 \\ 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ & & \\ \end{array}$	$\begin{array}{llll}1 & 1 & 1 \\ 1 & 1 & \\ 1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 \\ 1 & 1 \\ 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	1	䍖

291930083082800 WEST PASS SUWANNEE RIVER AT SUWANNEE, FL--Continued TEMPERATURE, WATER BOTTOM (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	ОСт	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	22.1	22.7	27.0	27.1	30.7	29.0
2		---		---		---	22.8	22.3	27.2	26.9	30.5	28.9
3	---	---	---	---	---	---	23.6	22.6	---	27.0	29.8	29.2
4	---	---	---	---	---	---	24.0	22.9	---	27.2	29.5	29.3
5	---	---	---	---	---	17.8	24.4	23.2	---	27.7	29.6	29.3
6	---	---	---	---	---	18.2	25.0	23.9	---	28.1	29.9	29.1
7	---	---	---	---	---	18.9	25.3	24.1	---	28.3	29.3	28.9
8	---	--	---	---	---	18.7	25.4	24.2	--	28.8	28.7	28.7
9		---		---		18.0	25.3	25.0	---	29.1	28.1	28.9
10	---	---	---	---	---	18.7	25.1	25.3	---	28.8	28.2	28.6
11	---	---	---	---	---	18.9	25.3	25.5	---	---	28.4	28.6
12	---	---	---	---	---	19.0	25.2	25.5	---	---	28.8	28.3
13	---	---	---	---	---	19.0	24.6	25.8	---	29.0	29.5	28.0
14	---	---	---	---		19.1	24.3	26.0	---	29.1	29.7	27.9
15	---	---	---	---	---	18.3	24.1	25.8	---	29.1	28.6	27.5
16	---	---	---	---	---	18.3	23.6	25.8	---	29.3	28.7	27.5
17	---	---	---	---	---	---	22.2	25.9	---	29.2	28.9	27.9
18	---	---	---	---	---	---	21.8	26.0	---	29.1	29.1	27.5
19	---	--	---	---	---	---	21.5	26.7	---	29.3	29.1	27.3
20	---	---	---	---	---	---	21.8	26.8	---	29.5	28.8	26.9
21	---	---	---	---	---	---	22.3	26.8	---	---	28.2	26.7
22	---	---	---	---	---	---	22.8	26.7	---	---	28.5	25.5
23	---	---	---	---	---	---	23.5	26.7	---	---	28.6	24.9
24	---	--	---	---	---	20.9	24.4	26.7	---	---	28.8	24.8
25	---	---	---	---	---	21.1	25.0	26.9	27.8	---	29.1	25.3
26	---	---	---	---	---	21.1	25.4	27.1	27.8	---	29.5	25.6
27	---	---	---	---	---	20.8	25.9	27.4	27.8	---	29.8	25.8
28	---	---	---	---	---	20.8	26.0	27.7	27.4	30.5	30.0	26.4
29	---	---	---	---	---	21.1	25.7	27.8	27.2	30.4	30.1	27.1
30	---	---	---	---	---	21.4	24.6	27.4	27.0	30.4	30.1	26.9
31	---	---	---	---	---	21.4	---	27.0	---	30.6	29.7	
MEAN	---	---	---	---	---	---	24.1	25.6	---	---	29.2	27.5
MAX	---	---	---	---	---	---	26.0	27.8	---	-	30.7	29.3
MIN	---	---	---	---	---	---	21.5	22.3	---	---	28.1	24.8

SALINITY TOP (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	ОСт	nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	. 52	. 73	1.4	. 90	1.1	1.4
2	---	---	---	---	---	---	. 19	1.1	1.0	. 43	. 65	. 57
3	---	---	---	---	---	---	. 21	2.1	. 59	. 51	. 75	. 86
4	---	-	---	---	---	---	. 23	1.6	. 53	. 35	. 30	2.0
5	---	---	---	---	---	---	. 20	2.2	. 21	. 25	2.0	3.2
6	---	--	-	---	---	. 14	. 20	. 66	. 26	. 24	1.7	4.0
7	---	---	---	---	---	. 14	. 17	. 55	. 27	. 48	1.6	2.4
8	---	---	---	---	---	. 14	. 16	. 20	. 49	1.1	. 95	2.4
9	---	--	---	--	---	. 58	. 16	. 20	. 67	1.3	1.4	3.2
10	---	---	---	---	---	. 14	. 16	. 31	1.2	. 92	2.3	3.0
11	---	---	---	---	---	. 14	. 20	. 78	. 91	e2.0	2.5	2.7
12	---	-	---	---	---	. 14	. 21	1.3	1.7	e1.3	1.5	1.1
13	---	-	---	---	---	. 63	. 31	2.8	2.3	3.2	1.1	. 61
14	---	---	---	---	---	2.1	1.3	3.9	3.1	2.6	1.6	. 27
15	---	---	---	---	---	. 26	6.0	. 98	2.7	1.9	1.0	1.9
16	---	---	---	---	---	. 15	1.3	2.3	2.7	1.1	. 67	5.0
17	---	---	---	---	---	---	. 34	2.6	e1.7	. 46	. 21	1.5
18	---	---	---	---	---	---	. 32	3.1	. 28	. 35	. 53	4.2
19	---	---	---	---	---	. 39	. 61	2.0	. 41	. 22	. 48	8.4
20	---	---	---	---	---	. 43	. 74	. 48	. 34	. 19	. 38	5.6
21	---	---	---	---	---	. 86	. 24	. 31	. 35	---	. 23	2.7
22	---	---	---	---	---	. 19	. 19	. 23	. 22	--	. 20	2.0
23	---	---	---	---	---	e. 16	. 18	. 25	. 37	---	. 36	2.4
24	---	---	---	---	---	. 15	. 18	. 55	. 77	-	. 90	4.7
25	---	---	---	---	---	. 15	. 22	. 35	1.0	---	1.6	7.0
26	---	---	---	---	---	. 15	. 49	. 35	1.5	-	2.0	6.0
27	---	---	---	---	---	. 15	2.2	. 41	1.5	---	2.6	4.4
28	---	---	---	---	---	. 17	1.5	. 45	1.7	2.2	3.1	2.6
29	--	---	---	---	---	. 22	. 69	. 58	1.7	2.8	3.5	2.9
30	--	---	---	---	---	. 31	. 39	. 57	. 84	2.2	3.2	1.7
31	---	---	---	---	---	. 86	---	1.4	---	2.0	. 76	---
MEAN	---	---	---	---	---	---	. 66	1.1	1.1	---	1.3	3.0
MAX	-	---	---	---	---	--	6.0	3.9	3.1	-	3.5	8.4
MIN	---	---	---	--	---	---	. 16	. 20	. 21	--	. 20	. 27

SALINITY MIDDLE (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP
1	1.2	---	. 46	. 65	. 60	. 15	. 50	---	---	---	---	---
2	2.0	---	. 36	2.6	. 91	. 21	. 20	---				
3	4.5	---	1.4	1.2	. 21	. 72	. 22	---	---	---	---	---
4	---	---	2.0	. 21	. 13	. 14	. 25	---	---	---	---	---
5	---	---	1.6	. 19	. 12	. 22	. 21	---	---		---	---
6	---	---	1.1	. 20	. 12	. 14	. 20	---	---	---	---	---
7	---	---	1.8	. 24	. 11	. 14	. 19	---	---			
8	---	---	. 27	. 21	. 11	. 14	. 17	---	---	---	---	---
9	---	---	. 18	. 18	. 11	. 61	. 16	---	---	---	---	---
10	---	---	. 18	e. 18	. 11	. 14	. 16	---	---	---	---	---
11	---	---	. 17	. 17	. 10	. 14	. 19	---	---	---	---	---
12	---	---	. 33	e. 29	. 10	. 14	. 26	---	---	---	---	---
13	---	. 16	. 24	. 27	e. 10	. 60	. 37	---	---	---	---	---
14	---	. 18	. 19	. 58	e. 10	2.1	1.4	---	---	---	---	---
15	---	. 18	. 18	1.5	. 10	. 29	6.2	---	---	---	---	---
16	---	. 18	. 23	. 21	. 36	. 15	1.5	---	---	---	---	---
17	---	. 27	. 31	1.2	1.8	. 30	. 36	---	---	---	---	---
18	---	. 19	. 27	1.4	1.8	. 72	. 40	---	---	---	---	---
19	---	. 21	1.4	. 63	. 23	. 84	. 68	---	---		---	---
20	---	. 55	. 52	. 57	. 13	. 49	. 81	---	---		---	---
21	---	. 52	1.3	. 57	. 13	. 94	. 30	---	---	---	---	---
22	---	. 17	. 94	. 92	. 13	. 20		---	---		---	
23	---	. 21	. 30	. 63	. 13	. 16	---	---	---	---	---	---
24	---	. 26	. 40	. 17	. 13	. 15	---	---	---			---
25		. 25	. 19	e. 16	. 16	. 15	---	---	---		---	---
26	---	. 25	. 18	e. 15	. 17	. 15	---	---	---	---	---	---
27		. 26	. 18	. 25	. 19	. 15	---	---	---		---	
28	---	. 26	1.0	. 40	. 96	. 17	---	---	---	---	---	---
29	---	. 42	1.8	. 62	---	23	---	---	---	---	---	---
30	---	. 48	. 92	. 88	---	. 35	---	---	---		---	---
31	---	--	. 33	. 40	---	. 87	---	---	---	---	---	---
MEAN	---	---	. 67	. 58	. 33	. 38	---	---	---	---	---	---
MAX	---	---	2.0	2.6	1.8	2.1	---	---	---	---	---	---
MIN	---	---	. 17	. 15	. 10	. 14	---	---	---	---	---	---

SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	. 64	. 96	1.5	. 93	1.2	1.6
2		---	---	---	---	---	. 19	1.5	1.1	. 45	. 91	. 73
3	---	---	---	---	---	---	. 22	2.3	. 63	. 57	. 87	1.8
4	---	---	---	---	---	---	. 24	1.7	. 92	. 37	. 32	3.5
5	---	---	---	---	---	---	. 21	2.7	. 21	. 24	2.3	4.6
6	---	---	---	---	---	. 14	. 20	. 89	. 27	. 22	2.0	5.0
7	---	---	---	---	---	. 14	. 18	. 67	. 28	. 55	1.7	2.7
8	---	---	---	---	---	. 14	. 16	. 21	. 55	1.3	1.1	2.7
9	---	---	---		---	. 72	. 16	. 20	. 72	1.4	1.5	3.6
10	---	---	---	---	---	. 14	. 16	. 35	1.2	. 98	2.6	3.3
11	---	---	---	---	---	. 14	. 20	. 87	. 97	e2.1	3.0	2.9
12	---	---	---	---	---	. 14	. 23	1.4	1.8	e1.9	1.7	1.4
13	---	---	---	---	---	. 79	. 36	3.1	2.6	3.4	1.3	. 68
14	---	---	---	---	---	3.6	1.5	4.5	3.4	2.9	1.9	. 29
15	---	---	---	---	---	. 39	6.9	1.2	3.0	2.0	1.2	6.0
16	---	---	---	---	---	e. 15	1.4	2.3	e2.8	1.3	. 79	9.7
17	---	---	---	---	---	---	. 37	2.5	e2.1	. 52	. 21	14.8
18	---	---	---	---	---	---	. 35	3.1	. 28	. 35	. 58	10.8
19	---	---	---	---	---	. 42	. 69	2.2	. 31	. 21	. 60	11.6
20	---	---	---	---	---	. 48	. 97	. 54	. 30	. 18	. 62	6.8
21	---	---	---	---	---	1.0	. 25	. 39	. 33	---	. 34	7.9
22	---	---	---	---	---	. 20	. 19	. 23	. 21	---	. 22	2.8
23	---	---	---	---	---	e. 16	. 18	. 27	. 32	---	. 50	3.0
24	---	---	---	---	---	. 15	. 18	. 58	. 62	---	1.1	5.5
25	---	---	---	---	---	. 15	. 22	. 43	1.1	---	1.9	8.0
26	---	---	---	---	---	. 15	. 61	. 39	1.8	---	2.3	7.0
27	---	---	---	---	---	. 15	2.9	. 48	1.6	---	2.9	5.1
28	---	---	---	---	---	. 18	1.8	. 54	1.8	2.4	3.3	3.1
29	---	---	---	---	---	. 24	. 83	. 64	1.8	3.2	3.9	3.5
30	--	---	---	---	---	. 34	. 51	. 60	. 96	2.5	3.8	2.1
31	---	---	---	---	---	. 99	---	1.5	---	2.2	. 82	
MEAN	---	---	---	---	---	---	. 77	1.3	1.2	---	1.5	4.8
MAX	---	---	---	---	---	---	6.9	4.5	3.4	---	3.9	14.8
MIN	---	---	---	---	---	---	. 16	. 20	. 21	---	. 21	. 29

e Estimated

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2360	-788	-407	1360	1540	1570	1870	2470	1570	2180	1480	1330
2	1040	5410	-684	1680	985	1810	2810	3130	1780	1440	1710	2030
3	1890	1500	121	1330	717	1750	2690	3090	1460	1440	1820	1560
4	2430	611	2220	1910	2030	2960	4170	2500	1350	588	1600	1530
5	2410	761	1030	3300	2960	2750	2810	2260	893	1370	1620	1170
6	2690	1250	3840	168	1500	2730	2370	1880	1940	1430	1130	1940
7	1960	2100	1690	2130	2070	2410	2370	2020	1890	1540	2080	1520
8	1960	1360	1420	1290	2000	1940	1820	1520	1040	2310	1650	2040
9	1830	2000	1450	1670	1950	2030	3740	1330	150	818	1800	911
10	2590	2210	2040	2500	1500	1950	1870	1690	646	1180	1670	2130
11	2840	2720	2030	2030	1420	1080	2310	1880	1170	2250	2220	2490
12	2430	2690	1650	1580	1760	3160	2560	1450	1470	1980	2130	2730
13	2150	1280	2520	1370	843	1670	2380	1810	1550	1470	2330	2940
14	2460	1600	2860	1930	2710	919	2870	2680	1180	1730	2110	3390
15	2390	2100	1730	-20	1910	144	3240	2870	1490	999	2180	3460
16	1570	2100	1850	-150	1520	2090	3650	1890	1720	1670	1560	3150
17	292	1200	98	654	2170	2450	3280	1490	1710	2180	1520	5630
18	899	-69	-1120	490	1900	2720	3990	1560	e1480	2060	1630	3850
19	1120	1010	2450	2010	2470	1050	3280	1750	e1360	1340	1710	3590
20	1880	1930	1560	3570	3070	2470	2690	1580	e1120	1380	1840	2220
21	3090	2220	1340	1880	2050	2360	2220	1560	e2150	1740	1510	3710
22	1850	2760	3450	1030	1500	1980	3630	1620	e1740	1260	1060	3100
23	2770	2120	2500	1920	1400	1630	2010	1580	e1260	1940	879	3280
24	2550	1900	1630	3660	1590	1030	55	1660	e1870	1540	468	3800
25	1680	1690	1640	1600	1740	1350	4320	1580	e1560	1510	1320	3530
26	2060	2690	1160	1510	1420	2130	2490	1670	e948	1290	1410	4540
27	1920	2770	1380	899	1760	-165	2470	1320	1430	1450	1800	3920
28	1970	1890	1370	507	2430	4540	1860	955	1200	1960	1880	3370
29	1710	1020	2010	-59	1180	1880	3730	2250	2280	1720	2150	3600
30	654	2190	1220	2110	---	2000	3280	2560	2850	1990	1330	3390
31	1740	---	1050	1760	---	3690	---	1550	---	1640	1050	---
MEAN	1974	1808	1519	1536	1796	2003	2761	1908	1475	1593	1634	2862
MAX	3090	5410	3840	3660	3070	4540	4320	3130	2850	2310	2330	5630
MIN	292	-788	-1120	-150	717	-165	55	955	150	588	468	911

WTR YR 2000 MEAN 1903 MAX 5630 MIN -1120
ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 91	1.31	-. 28	. 46	-. 16	. 48	. 29	. 62	. 67	1.04	1.25	1.47
2	1.16	1.11	. 26	. 31	-. 32	. 52	. 72	. 90	. 83	. 89	1.14	1.37
3	1.24	-. 71	. 78	. 48	. 04	. 66	1.27	. 85	. 93	. 78	1.06	1.35
4	1.16	-. 13	. 79	. 68	. 27	1.01	1.20	. 93	. 88	. 96	. 86	1.22
5	1.09	-. 17	1.22	-. 41	-. 42	. 30	-. 32	. 94	1.10	. 96	. 77	1.18
6	. 86	-. 01	1.01	-. 10	-. 27	. 40	. 55	. 84	. 86	. 97	. 95	1.04
7	. 52	. 25	. 21	. 03	-. 04	. 39	. 78	. 70	. 35	1.03	. 95	. 97
8	1.00	. 64	. 34	. 25	. 14	. 69	1.17	. 77	. 39	. 82	. 69	. 64
9	1.22	. 89	. 48	. 64	-. 03	. 87	-. 56	. 86	. 45	. 79	. 66	. 65
10	1.27	. 91	. 71	. 92	. 20	. 92	. 40	. 99	. 52	. 97	. 91	. 92
11	1.12	. 79	. 55	. 37	. 65	1.21	. 61	. 69	. 49	. 86	1.15	. 93
12	1.01	. 23	. 80	. 13	. 63	. 20	. 55	. 62	. 73	. 92	1.15	1.01
13	1.11	. 23	1.26	. 40	. 66	-. 22	. 44	. 69	. 61	. 86	1.11	1.09
14	. 84	. 62	. 51	-1.38	1.22	. 05	. 33	. 62	. 82	1.21	1.05	1.32
15	. 22	. 58	. 30	-. 83	. 33	. 43	. 64	. 33	1.05	1.41	. 80	1.46
16	-. 19	. 54	-. 46	. 10	. 23	. 91	. 78	. 21	1.07	1.66	. 78	1.75
17	. 66	. 29	-. 37	. 41	. 35	. 62	. 90	. 64	. 97	1.52	1.04	. 56
18	. 66	. 46	. 40	. 57	. 44	. 11	. 99	. 94	e. 91	1.06	1.08	1.20
19	. 75	. 76	. 79	. 61	. 58	. 42	. 62	. 89	e. 79	1.04	. 96	. 95
20	. 84	1.05	. 37	. 83	. 12	. 77	. 86	. 89	e. 70	1.20	. 91	1.06
21	. 38	. 97	. 62	-. 27	-. 28	. 34	1.31	. 98	e. 53	1.13	. 72	1.24
22	. 60	. 73	. 28	. 58	-. 40	. 19	. 61	1.13	e. 56	1.33	. 46	1.06
23	. 83	. 67	-. 16	1.01	. 01	. 00	. 80	. 97	e. 66	1.14	. 53	. 86
24	. 27	. 72	-. 29	. 65	. 26	. 23	1.64	. 99	e. 80	1.23	. 69	. 86
25	. 35	1.00	-. 62	-. 27	. 41	. 78	1.27	. 93	e. 77	1.09	. 89	1.02
26	. 63	1.18	-. 08	-. 51	. 55	. 92	. 47	. 77	e. 75	. 92	. 96	1.02
27	. 77	. 39	. 17	-. 47	. 67	1.72	. 54	. 60	. 76	. 88	1.17	. 43
28	. 61	. 26	. 46	-. 53	. 17	1.08	1.27	. 72	1.02	. 94	1.15	. 32
29	. 41	. 45	. 11	. 19	. 35	. 92	. 70	. 75	1.24	1.11	1.16	. 14
30	. 85	-. 66	. 40	. 11	---	1.24	. 34	. 30	1.36	1.22	1.02	. 17
31	. 79	---	. 61	-. 27	---	. 52	---	. 39	---	1.39	1.17	---
MEAN	. 77	. 51	. 36	. 15	. 22	. 60	. 71	. 76	. 79	1.08	. 94	. 98
MAX	1.27	1.31	1.26	1.01	1.22	1.72	1.64	1.13	1.36	1.66	1.25	1.75
MIN	-. 19	-. 71	-. 62	-1.38	-. 42	-. 22	-. 56	. 21	. 35	. 78	. 46	. 14

WTR YR 2000 MEAN . 66 MAX 1.75 MIN -1.38
e Estimated

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	
1	26.2	22.4	18.1	16.1	14.6	20.7	23.1	23.0	27.6	27.5	29.2	28.8
2	25.9	22.3	16.9	16.7	15.0	20.7	23.4	23.4	28.1	27.9	29.4	28.0
3	26.1	21.3	16.4	17.2	15.1	20.9	23.5	23.8	28.7	28.0	29.3	27.6
4	25.9	20.3	16.7	17.8	15.3	21.0	23.1	23.9	29.1	28.2	29.1	27.7
5	25.5	19.8	17.2	17.9	15.6	21.0	22.2	24.3	29.0	29.0	29.5	27.6
6	25.1	19.8	17.7	17.4	15.3	20.8	21.6	24.7	28.6	29.4	30.0	27.0
7	24.6	19.8	17.3	17.8	15.1	21.1	21.7	25.2	28.7	29.9	29.9	27.0
8	24.5	19.9	17.3	18.1	15.4	21.3	21.9	25.4	28.5	29.9	29.9	27.1
9	24.8	20.2	17.9	18.1	15.7	21.9	20.8	25.8	28.4	29.7	29.9	27.3
10	25.3	20.5	18.4	18.4	16.1	22.2	20.6	26.2	28.2	29.9	29.7	27.3
11	25.7	20.8	19.1	18.8	16.3	22.4	20.9	26.7	27.9	30.4	30.0	27.3
12	25.9	21.0	19.3	19.1	16.7	22.1	21.4	27.2	28.0	30.6	29.4	27.5
13	26.1	21.0	19.2	19.1	17.3	21.4	22.1	27.4	28.5	30.2	29.0	27.9
14	26.1	21.2	19.4	18.3	17.6	21.0	21.7	27.6	28.6	29.2	29.2	28.2
15	25.9	21.2	19.4	16.9	18.1	20.8	21.2	27.4	28.8	29.1	29.6	28.4
16	25.6	20.8	18.7	16.5	18.5	21.3	21.7	27.3	29.0	29.4	29.9	27.8
17	25.1	20.2	17.4	16.4	19.2	21.6	22.4	27.1	29.1	29.3	29.9	26.0
18	25.1	19.7	16.8	16.7	19.9	21.9	22.5	26.9	29.2	29.3	30.1	24.4
19	25.0	19.6	16.9	17.2	20.4	21.6	22.6	27.0	29.2	29.6	29.8	24.8
20	24.9	19.9	17.4	17.4	20.6	21.6	23.1	27.2	29.4	30.1	29.6	25.7
21	24.2	20.1	17.3	16.9	20.2	21.8	23.5	27.3	---	29.4	29.3	26.1
22	23.1	20.2	17.6	15.2	19.7	22.1	23.1	27.2	---	28.9	29.2	25.9
23	22.2	20.1	17.6	15.5	19.4	22.1	23.0	27.4	---	28.5	29.4	26.1
24	21.1	20.4	17.1	16.2	19.7	22.0	22.7	27.6	---	27.9	29.7	26.5
25	20.4	21.2	16.6	15.3	20.1	22.4	23.0	27.8	---	27.8	29.9	26.8
26	20.6	21.7	15.5	14.3	20.3	22.6	23.0	28.2	---	28.4	29.6	26.8
27	20.8	21.0	15.6	13.7	20.4	22.6	23.0	28.7	28.1	29.0	29.5	26.1
28	20.8	20.6	15.7	13.2	20.6	22.5	22.9	28.9	28.1	29.3	29.3	25.6
29	21.2	20.4	15.5	13.8	20.6	22.7	23.0	28.9	28.2	29.4	28.8	25.1
30	21.7	19.7	15.5	14.5	---	22.8	23.1	28.5	27.4	29.4	28.7	24.6
31	22.0	---	15.7	14.5	---	23.1	---	27.7	--	29.0	29.0	---1

TEMPERATURE, WATER BOTTOM (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.3	22.6	18.3	16.0	14.3	20.5	23.1	22.9	27.6	27.5	29.2	28.9
2	26.1	22.4	15.8	16.6	14.1	20.7	23.4	23.4	28.1	27.9	29.4	28.0
3	26.3	21.1	15.8	17.2	14.6	20.9	23.5	23.8	28.7	28.0	29.3	27.6
4	25.9	18.3	16.7	17.8	15.2	21.0	23.2	23.9	29.1	28.1	29.1	27.6
5	25.5	19.1	17.2	17.9	15.5	20.9	22.2	24.3	28.8	29.0	29.5	27.5
6	25.1	19.6	17.7	17.2	15.2	20.8	21.5	24.7	28.5	29.4	30.0	27.1
7	24.6	19.8	17.3	17.7	15.0	21.1	21.7	25.2	28.7	29.8	29.9	27.1
8	24.5	19.9	17.3	18.1	15.3	21.3	21.9	25.4	27.8	29.9	30.1	27.3
9	24.8	20.2	17.9	18.1	15.7	21.9	20.8	25.8	27.7	29.7	30.3	27.5
10	25.3	20.5	18.5	18.4	16.1	22.2	20.5	26.2	28.1	29.9	29.7	27.3
11	25.7	20.8	19.1	18.8	16.4	22.5	20.7	26.6	28.0	30.4	29.9	27.3
12	25.9	21.0	19.3	19.1	16.7	22.1	21.4	27.1	28.0	30.6	29.3	27.5
13	26.2	21.2	19.2	19.1	17.4	21.0	22.0	27.4	28.4	30.2	29.0	27.9
14	26.1	21.6	19.4	18.3	17.6	20.1	21.7	27.6	28.6	29.2	29.2	28.2
15	26.0	22.0	19.4	16.7	18.0	20.5	21.2	27.4	28.8	29.0	29.6	28.4
16	25.6	21.7	18.7	15.9	18.4	21.3	21.7	27.3	29.1	29.4	29.9	27.8
17	24.5	21.3	17.4	16.2	19.2	21.6	22.4	27.1	29.1	29.3	30.0	26.0
18	25.3	20.2	16.6	16.6	19.9	21.9	22.5	26.9	29.2	29.3	30.1	24.3
19	25.6	19.6	16.9	17.2	20.4	21.6	22.6	27.0	29.2	29.6	29.8	24.7
20	25.0	19.9	17.4	17.5	20.6	21.6	23.1	27.2	29.4	30.1	29.6	25.7
21	24.2	20.2	17.3	16.8	20.2	21.8	23.5	27.3	-	29.4	29.3	26.1
22	23.1	20.3	17.6	15.0	19.7	22.1	23.1	27.2	-	28.9	29.2	26.0
23	22.2	20.2	17.6	15.4	19.4	22.1	22.7	27.4	- - -	28.5	29.4	26.1
24	21.0	20.4	17.1	16.1	19.8	22.0	22.7	27.6	- - -	27.9	29.7	26.5
25	20.3	21.3	16.4	13.4	20.1	22.4	23.0	27.8	--	27.8	30.1	26.8
26	20.5	21.7	15.4	11.7	20.3	22.6	22.6	28.2	---	28.4	29.6	26.8
27	20.9	21.1	15.2	11.1	20.2	22.6	22.9	28.7	28.0	29.0	29.5	26.1
28	20.8	20.6	15.7	11.2	20.4	22.3	22.4	28.9	28.0	29.3	29.4	25.7
29	21.4	20.6	15.5	11.6	20.1	22.5	23.0	28.8	28.2	29.4	28.8	25.1
30	22.0	20.4	15.1	14.4	---	22.8	23.1	28.5	27.4	29.4	28.7	24.6
31	22.3	---	15.5	14.4	---	23.1	---	27.6	---	28.9	29.0	---
MEAN	24.2	20.7	17.2	16.2	17.8	21.7	22.3	26.6	--	29.1	29.5	26.8
MAX	26.3	22.6	19.4	19.1	20.6	23.1	23.5	28.9	---	30.6	30.3	28.9
MIN	20.3	18.3	15.1	11.1	14.1	20.1	20.5	22.9	---	27.5	28.7	24.3

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.1	3.9	1.2	. 60	. 38	. 71	. 18	1.5	4.8	2.5	4.6	4.7
2	1.7	3.5	2.4	. 71	. 78	. 69	. 91	1.6	5.0	3.3	4.3	3.1
3	1.4	. 45	3.9	1.2	1.8	1.2	1.6	1.5	5.2	3.6	2.7	1.4
4	1.1	1.1	2.6	1.6	2.4	2.1	2.3	2.0	4.7	5.2	1.1	. 92
5	1.3	1.2	4.2	. 48	. 93	. 46	. 22	2.4	5.4	4.2	. 69	. 98
6	. 84	1.3	3.1	1.1	1.2	1.2	. 95	2.6	3.3	3.4	. 93	. 84
7	. 65	1.8	. 61	2.0	2.2	1.1	1.0	1.9	1.5	2.4	. 97	1.0
8	1.9	2.8	1.6	2.0	2.1	2.0	2.0	1.3	. 65	. 59	. 39	. 88
9	1.6	3.7	1.9	4.5	1.2	2.1	. 20	. 73	1.6	. 82	. 69	2.3
10	1.8	3.0	3.1	4.3	2.2	1.5	. 43	. 23	2.2	1.6	1.9	2.6
11	1.7	2.5	1.9	. 71	1.8	2.0	. 13	. 19	1.7	1.5	2.7	1.9
12	1.4	. 84	2.2	. 41	. 66	. 43	. 13	. 24	1.7	1.7	. 97	2.4
13	1.5	1.0	3.4	. 77	1.1	. 20	. 13	. 28	1.1	1.5	1.1	2.2
14	. 87	2.6	. 28	. 21	1.3	. 43	. 13	. 56	1.9	3.7	1.6	2.8
15	. 38	1.8	. 30	. 83	. 39	2.0	. 27	. 49	2.9	4.6	1.9	2.7
16	. 45	1.8	. 26	2.2	. 98	1.6	. 37	. 71	3.0	5.7	2.4	4.1
17	5.0	1.7	. 56	2.3	1.3	. 50	. 57	2.2	2.5	3.7	2.8	. 28
18	1.8	4.0	2.2	2.5	1.8	. 32	1.7	2.5	2.8	2.6	2.4	. 53
19	2.1	3.5	2.0	2.9	2.8	. 78	. 47	1.8	2.3	2.3	1.3	. 17
20	2.3	4.1	. 87	4.5	1.9	2.4	1.4	1.3	2.2	2.6	. 97	. 45
21	. 89	4.2	2.3	1.0	. 50	. 64	2.0	1.9	---	1.7	. 68	. 52
22	1.9	2.9	2.3	5.0	. 65	1.1	1.3	1.7	--	1.3	. 55	. 51
23	3.7	2.9	1.3	5.5	1.1	. 61	1.6	. 86	---	. 49	1.2	. 13
24	2.2	3.5	. 90	2.8	. 89	1.6	3.4	. 41	---	. 50	2.1	. 22
25	2.3	5.3	. 77	1.4	. 77	2.0	. 50	. 38	---	. 58	2.8	. 67
26	3.2	6.2	1.8	1.3	. 62	1.9	. 16	. 26	---	. 62	2.5	. 67
27	3.7	1.6	1.5	1.2	. 20	3.3	. 17	. 28	1.2	1.3	3.6	. 28
28	2.5	1.0	1.7	1.3	. 18	. 31	. 31	. 66	2.2	2.2	4.6	. 28
29	1.2	1.3	. 50	1.6	. 49	. 18	. 20	. 83	3.6	4.0	3.6	. 26
30	2.9	. 31	. 81	. 34	---	. 58	. 19	. 85	4.0	5.0	3.4	. 14
31	1.5	---	. 91	. 22	---	. 16	---	2.6	---	5.3	4.0	---
MEAN	1.8	2.5	1.7	1.9	1.2	1.2	. 83	1.2	---	2.6	2.1	1.3
MAX	5.0	6.2	4.2	5.5	2.8	3.3	3.4	2.6	---	5.7	4.6	4.7
MIN	. 38	. 31	. 26	. 21	. 18	. 16	. 13	. 19	---	. 49	. 39	. 13

SALINITY BOTTOM (PARTS PER THOUSAND), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.6	5.7	13.8	1.3	1.6	1.5	. 19	1.8	5.3	2.6	5.2	5.8
2	2.8	3.9	19.1	1.2	7.1	1.0	1.1	1.9	5.7	3.5	4.7	3.5
3	2.5	3.0	9.6	2.0	7.2	1.6	2.1	1.8	6.0	3.6	3.0	1.7
4	1.6	15.0	3.5	2.4	3.8	2.5	2.8	2.2	5.4	5.5	1.2	1.1
5	2.1	6.5	5.5	. 71	1.7	. 94	. 24	2.7	7.3	4.4	. 82	1.1
6	1.1	2.4	3.8	2.2	1.7	1.6	1.2	2.9	4.5	4.3	1.2	1.2
7	. 83	2.3	1.6	2.8	3.1	1.3	1.2	2.0	2.1	3.6	1.2	2.2
8	2.1	3.6	3.0	4.0	2.7	2.5	2.1	1.4	3.7	. 65	1.2	3.2
9	1.8	4.3	2.5	5.3	1.8	2.6	. 22	1.0	6.3	. 96	2.6	5.1
10	2.3	3.4	3.9	5.1	2.7	1.9	. 64	. 24	5.9	1.9	2.5	3.3
11	2.1	3.0	2.2	. 90	2.2	2.4	. 88	. 19	2.3	1.9	3.6	2.5
12	1.8	1.5	2.8	. 47	1.0	. 82	. 13	. 26	2.2	1.9	1.9	2.8
13	1.9	4.8	4.6	. 91	1.6	1.0	. 13	. 31	1.4	1.9	1.7	2.9
14	1.3	8.8	. 48	. 22	2.1	3.0	. 14	. 78	2.3	4.7	1.9	3.5
15	1.2	20.1	. 35	1.5	. 98	3.6	. 49	. 60	3.6	5.2	2.3	3.3
16	2.1	23.5	. 28	5.0	1.3	2.1	. 50	. 82	3.4	6.1	2.8	5.1
17	20.3	24.2	1.4	4.3	1.6	. 56	. 85	2.6	2.8	4.0	3.4	. 32
18	21.8	13.7	3.8	4.2	2.1	. 35	2.2	2.8	3.1	3.3	3.0	. 60
19	17.2	3.9	2.5	3.3	3.3	1.0	. 58	2.0	2.6	2.4	1.8	. 19
20	3.6	5.1	1.1	7.9	2.1	2.6	1.7	1.4	2.4	2.7	1.3	. 94
21	1.2	4.9	2.5	3.8	. 56	. 79	2.5	2.1	---	1.8	. 89	. 84
22	2.2	3.4	2.6	6.5	. 84	1.2	1.5	1.9	---	1.7	. 72	. 89
23	4.6	3.4	1.6	6.5	1.2	. 76	2.8	1.1	---	. 54	1.7	. 14
24	3.0	4.1	1.5	3.7	1.1	1.7	4.0	. 52	---	. 62	2.8	. 30
25	2.8	6.1	2.2	9.9	1.2	2.2	1.4	. 53	---	. 69	4.2	. 82
26	3.7	6.9	3.1	19.4	1.1	2.8	1.9	. 28	--	. 81	3.0	. 83
27	4.2	2.1	6.9	21.7	2.7	4.2	. 74	. 30	1.4	1.6	4.7	. 30
28	2.9	2.5	4.6	18.4	. 93	1.6	6.3	. 83	2.5	2.6	5.4	. 31
29	2.5	8.9	7.4	11.3	2.2	. 77	. 61	1.6	4.0	4.8	4.3	. 31
30	5.0	5.8	13.9	. 67	---	. 84	. 19	1.0	4.2	5.7	4.1	. 14
31	3.6	---	5.1	. 62	---	. 16	---	3.0	---	6.1	5.0	--
MEAN	4.1	6.9	4.4	5.1	2.2	1.7	1.4	1.4	---	3.0	2.7	1.8
MAX	21.8	24.2	19.1	21.7	7.2	4.2	6.3	3.0	-	6.1	5.4	5.8
MIN	. 83	1.5	. 28	. 22	. 56	. 16	. 13	. 19	---	. 54	. 72	. 14

A
Alapaha River near Jennings, F 55
Alaqua Creek near Pleasant Ridge, FL 111
Alligator Creek near Fargo, GA 44
Apalachicola River at Chattahoochee, FL 92
Apalachicola River near Blountstown, FL 95
Apalachicola River near Sumatra, FL 102
Aucilla River at Lamont, FL 77

B

Bay Creek near Fargo, GA 45
Bayou Marcus Creek near Pensacola, FL 120
Big Coldwater Creek near Milton, FL 116
Blackwater River near Baker, FL 115
Bruce Creek at SH 81 near Redbay, FL 109
Brushy Creek near Bratt, FL 122
C
Chipola River at Cockran Landing near Wewahitchka, FL . . . 100
Chipola River at Marianna, FL 98
Chipola River near Altha, FL 99
Choctawhatchee River near Bruce, FL 110
Choctawhatchee River near Pittman, FL 107
Cypress Creek near Edith, GA 50
E
Econfina Creek near Bennett, FL 106
Econfina River near Perry, FL 76
Elevenmile Creek near Pensacola, FL 121
Escambia River near Century, FL 118
Escambia River near Molino, FL 119
F
Fenholloway River near Foley, FL 74
Fenholloway River near Perry, FL 75
G
131
Gator Creek Dam near Fargo, GA
J
Jones Creek Pond near Fargo, GA 130
L
Lake Jackson near Tallahassee, FL 132
Lake Talquin near Bloxham, FL 133
Little River near Midway, FL 86
Lost Creek at Arran, FL 81
M
Martin Bayou at US 98 at Springfield, FL 105
Muddy Branch near Marianna, FL 97

N
New River near Lake Butler, FL . 66
New River near Sumatra, FL66
North Fork Suwannee River at Sill near Fargo, GA. 48

0

Ochlockonee River near Bloxham, FL. 87
Ochlockonee River near Concord, FL . 83
Ochlockonee River near Havana, FL . 84
Ochlockonee River near Smith Creek, FL 89
P
Perdido River at Barrineau Park, FL 123
Pond Creek near Milton, FL . 117
Project Data . 143
S
Santa Fe River at US HWY 441 near High Springs, FL. 69
Santa Fe River at Worthington Springs, FL . 67
Santa Fe River near Fort White, FL . 70
Shoal River near Crestview, FL . 114
Shoal River near Mossy Head, FL . 113
Sopchoppy River near Sopchoppy, FL. 82
Spring Creek near Reynoldsville, GA . 91
St. Marks River near Newport, FL . 80
Steinhatchee River near Cross City, FL . 73
Suwannee River at Branford, FL . 64
Suwannee River at Dowling Park, FL . 60
Suwannee River at Ellaville, FL. 58
Suwannee River at Luraville, FL . 62
Suwannee River at Sill near Fargo, GA . 46
Suwannee River near Benton, FL. 51
Suwannee River near Wilcox, FL. 71
Suwannnee River at White Springs, FL 53

T

Telogia Creek near Bristol, FL . 88

W

Waccassassa River near Gulf Hammock, FL 43
Ward Creek bl Mitchell Pond near Metcalf, GA 79
Ward Creek Tributary near Jasper, FL . 126
Well Descriptions and Ground-Water Data
Wakulla County . 136
Washington County . 138
West Pass Suwannee River at Suwannee, FL. 201
Withlacoochee River near Pinetta, FL . 57
Wrights Creek at SH 177A near Bonifay, FL. 108
Y
Yellow River near Oak Grove, FL. 112

[^0]: e Estimated

[^1]: CAL YR 1999 MEAN 1.10 MAX 4.59 MIN . 44
 WTR YR 2000 MEAN . 57 MAX 1.62 MIN . 41

[^2]: e Estimated

[^3]: e Estimated

[^4]: e Estimated

[^5]: e Estimated

[^6]: CAL YR 1999 MEAN 68.48 MAX 68.73 MIN 68.26
 WTR YR 2000 MEAN 68.34 MAX 68.87 MIN 67.44

[^7]: Estimated

[^8]: e Estimated

