WRIR 94-4121


You can DOWNLOAD THIS REPORT (1,332 KB) in Portable Document Format (PDF)
The Adobe PDF Reader program is available for free from Adobe.

Quinones-Aponte, Vicente, and Wexler, Eliezer J., Preliminary Assessment of Injection, Storage, and Recovery of Freshwater in the Lower Hawthorn Aquifer, Cape Coral, Florida: Water-Resources Investigations Report 94-4121, 102 p.

ABSTRACT:

A preliminary assessment of subsurface injection, storage and recovery of fresh canal water was made in the naturally brackish lower Hawthorn aquifer in Cape Coral, southwestern Florida. A digital modeling approach was used for this preliminary assessment, incorporating available data on hydrologic conditions, aquifer properties, and water quality to simulate density-dependent ground-water flow and advective-dispersive transport of a conservative ground-water solute (chloride ion).

A baseline simulation was used as reference to compare the effects of changing various operational factors on the recovery efficiency. A recovery efficiency of 64 percent was estimated for the baseline simulation. Based on the model, the recovery efficiency increases if the injection rate and recovery rates are increased and if the ratio of recovery rate to injection rate is increased. Recovery efficiency decreases if the amount of water injected is increased; slightly decreases if the storage time is increased; is not changed significantly if the water is injected to a specific flow zone; increases with successive cycles of injection, storage, and recovery; and decreases if the chloride concentrations in either the injection water or native aquifer water are increased. In everal hypothetical tests, the recovery efficiency fluctuated between 22 and about 100 percent.

Two successive cycles could bring the recovery efficiency from 60 to about 80 percent. Interlayer solute mass movement across the upper and lower boundaries seems to be the most important factor affecting the recovery efficiency. A sensitivity analysis was performed applying a technique in which the change in the various factors and the corresponding model responses are normalized so that meaningful comparisons among the responses could be made. The general results from the sensitivity analysis indicated that the permeabilities of the upper and lower flow zones were the most important factors that produced the greatest changes in the relative sensitivity of the recovery efficiency. Almost equally significant changes occurred in the relative sensitivity of the recovery efficiency when all porosity values of the upper and lower flow zones and the leaky confining units and the vertical anisotropy ratio were changed.

The advective factors are the most important in the Cape Coral area according to the sensitivity analysis. However, the dispersivity values used in the model were extrapolated from studies conducted at the nearby Lee County Water Treatment Plant, and these values might not be representative of the actual dispersive characteristics of the lower Hawthorn aquifer in the Cape Coral area.