WRIR 98-4251


You can download part or all of this report in PortableDocument Format (PDF) by clicking on the highlighted text ....... Download Report (462KB).
The Adobe PDF Reader program is available for free from Adobe.

Trommer, J.T., DelCharco, M.J., and Lewelling, B.R., 1999, Water budget and water quality of Ward Lake, flow and water-quality characteristics of the Braden River Estuary, and the effects of Ward Lake on the hydrologic system, west-central Florida: U.S. Geological Survey Water-Resources Investigations Report 98-4251, 33 p.

ABSTRACT

The Braden River is the largest tributary to the Manatee River. The river was dammed in 1936 to provide the city of Bradenton a source of freshwater supply. The resulting impoundment was called Ward Lake and had a storage capacity of about 585 million gallons. Reconstruction in 1985 increased the size of the reservoir to about 1,400 million gallons. The lake has been renamed the Bill Evers Reservoir and drains about 59 square miles. The Braden River watershed can be subdivided into three hydrologic reaches. The upper reach consists of a naturally incised free-flowing channel. The middle reach consists of a meandering channel affected by backwater as a result of the dam. The lower reach is a tidal estuary.

Water budgets were calculated for the 1993 through 1997 water years. Mean surface-water inflow to Ward Lake for the 5-year period was 1,645 inches per year (equivalent depth over the surface of the lake), or about 81.8 percent of total inflow. Mean ground-water inflow was 311 inches per year, or about 15.5 percent. A mean of 55 inches of rain fell directly on the lake and accounted for only 2.7 percent. Mean surface-water outflow was 1,736 inches, or about 86.4 percent of total water leaving the lake. There was no net ground-water outflow from the lake. Mean surface-water withdrawal for public supply was 229 inches per year, or about 11.4 percent. Mean evaporation was 45 inches and accounted for only 2.2 percent of the mean outflow. Change in lake storage on the budget was negligible.

Most chemical constituents contained in water flowing to Ward Lake meet the standards specified by the Florida Department of Environmental Protection and the U.S. Environmental Protection Agency. Phosphorus is the exception, exceeding the U.S. Environmental Protection Agency limits of 0.10 milligram per liter in most samples. However, the source of the phosphorus is naturally occurring phosphate deposits underlying the watershed. Organic nitrogen and orthophosphate are the dominant species of nutrients in the streams and the lake. A major source of water to the streams is the surficial aquifer system. Mineralized water pumped from the intermediate aquifer system and the Upper Floridan aquifer for irrigation of agricultural areas or golf courses has influenced the chemical composition of the surficial aquifer and surface-water systems.

The Braden River estuary receives freshwater inflow from Ward Lake and from three major streams discharging downstream from the dam. Salinity levels in the estuary are affected by freshwater flow from these sources and by antecedent conditions in the estuary prior to flow events. The lowest salinity levels are often measured at the confluence with Williams and Gap Creeks rather than at the outfall from the lake.

The chemical composition of water flowing from the tributaries to the estuary is similar to the chemical composition of water in the tributaries flowing to Ward Lake and does not appear to be affected by brackish water from high tides. Nitrogen concentrations in water from Glen Creek were greater than in water from all other tributaries in the watershed. Fertilizer from orange groves and stormwater runoff from urban and industrial areas affect the water quality in Glen Creek.

The effects of the reservoir on the hydrology of the watershed were to change the middle reach of the river from a brackish water estuary ecosystem to a freshwater lake ecosystem, raise water levels in the surficial aquifer system adjacent to the river, change water quality, and reduce freshwater flow to the estuary during periods of low flow. The lake acts as a sink for total organic carbon, dissolved solids, calcium, chloride, and sulfate, thereby decreasing loads of these constituents to the estuary.