ABSTRACT: In an area of mixed agricultural land use in Suwannee and Lafayette Counties of northern Florida, water samples were collected monthly from 14 wells tapping the Upper Floridan aquifer during July 1998 through June 1999 to assess hydrologic and land-use factors affecting the variability in nitrate concentrations in ground water. Unusually high amounts of rainfall in September and October 1998 (43.5 centimeters total for both months) resulted in an increase in water levels in all wells in October 1998. This was followed by unusually low amounts of rainfall during November 1998 through May 1999, when rainfall was 40.7 centimeters below 30-year mean monthly values.
The presence of karst features (sinkholes, springs, solution conduits) and the highly permeable sands that overlie the Upper Floridan aquifer provide for rapid movement of water containing elevated nitrate concentrations to the aquifer. Nitrate was the dominant form of nitrogen in ground water collected at all sites and nitrate concentrations ranged from less than 0.02 to 22 milligrams per liter (mg/L), as nitrogen. Water samples from most wells showed substantial monthly or seasonal fluctuations in nitrate concentrations. Generally, water samples from wells with nitrate concentrations higher than 10 mg/L showed the greatest amount of monthly fluctuation. For example, water samples from six of eight wells had monthly nitrate concentrations that varied by at least 5 mg/L during the study period. Water from most wells with lower nitrate concentrations (less than 6 mg/L) also showed large monthly fluctuations. For instance, nitrate concentrations in water from four sites showed monthly variations of more than 50 percent. Large fluctuations in nitrate concentrations likely result from seasonal agricultural practices (fertilizer application and animal waste spreading) at a particular site. For example, an increase in nitrate concentrations observed in water samples from seven sites in February or March 1999 most likely results from application of synthetic fertilizers during the late winter months.
Lower nitrate concentrations were detected in water samples from five of eight wells sampled during high-flow conditions for the Suwannee River in March 1998 compared to low-flow conditions in November 1998. Evidence for reduction of nitrate due to denitrification reactions was observed at one site (AC-1), as indicated by elevated concentrations of nitrogen gas and a corresponding increase in nitrogen isotope (d15N-NO3) values with a decrease in nitrate concentrations. Denitrification is unlikely at other sites based on the presence of dissolved oxygen concentrations greater than 2 mg/L in ground water and no observed trend between nitrate concentrations and values d15N-NO3 values.
Nitrate was the dominant nitrogen species in most monthly rainfall samples; however, ammonium concentrations were similar or greater than nitrate during November and December 1998. During February through May 1999, both nitrate and ammonium concentrations were substantially higher in monthly rainfall samples collected at the study area compared to mean monthly concentrations at the Bradford Forest site located east of the study area, which is part of the National Atmospheric Deposition Program/National Trends Network. Also, higher nitrogen deposition rates in the study area compared to those at Bradford Forest could indicate that substantial amounts of ammonia are volatilized from fertilizers and animal wastes, released to the atmosphere, and incorporated as nitrate and ammonium in rainfall deposited in the middle Suwannee River Basin.
Ground-water samples from most sites had d15N-NO3 values that indicated a mixture of inorganic and organic sources of nitrogen, which corresponded to multiple land uses where both synthetic fertilizers and manure are used on fields near these sites. Distinct d15N-NO3 signatures, however, were observed at some sites. For example, water samples from areas of row-crop farming as the dominant land use had d15N-NO3 values less than 4 per mil, indicating an inorganic nitrogen source such as synthetic fertilizer. In contrast, d15N-NO3 values greater than 9 per mil were found in water samples from three sites where manure from dairy and or poultry operations is spread on fields throughout the year.