WRIR 93-4033

You can DOWNLOAD THIS REPORT (1,043 KB) in Portable Document Format (PDF)
The Adobe PDF Reader program is available for free from Adobe.

Light, H.M., Darst, M.R., MacLaughlin, M.T., and Sprecher, S.W., 1993, Hydrology, Vegetation, and Soils of Four North Florida River Flood Plains with an Evaluation of State and Federal Wetland Determinations: Water-Resources Investigations Report 93-4033, 93 p.


A study of hydrologic conditions, vegetation, and soils was made in wetland forests of four north Florida streams from 1987 to 1990. The study was conducted by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Regulation to support State and Federal efforts to improve wetland delineation methodology in flood plains.

Plant communities and soils were described and related to topographic position and long-term hydrologic conditions at 10 study plots located on 4 streams. Detailed appendixes give average duration, frequency, and depth of flooding; canopy, subcanopy, and ground-cover vegetation; and taxonomic classification, series, and profile descriptions of soils for each plot. Topographic relief, range in stage, and depth of flooding were greatest on the alluvial flood plain of the Ochlockonee River, the largest of the four streams. Soils were silty in the lower elevations of the flood plain, and tree communities were distinctly different in each topographic zone. The Aucilla River flood plain was dominated by levees and terraces with very few depressions or low backwater areas. Oaks dominated the canopy of both lower and upper terraces of the Aucilla flood plain. Telogia Creek is a blackwater stream that is a major tributary of the Ochlockonee River. Its low, wet flood plain was dominated by Wyssa ogeche (Ogeechee tupelo) trees, had soils with mucky horizons, and was inundated by frequent floods of very short duration. The St. Marks River, a spring-fed stream with high base flow, had the least topographic relief and lowest range in stage of the four streams. St. Marks soils had a higher clay content than the other streams, and limestone bedrock was relatively close to the surface.

Wetland determinations of the study plots based on State and Federal regulatory criteria were evaluated. Most State and Federal wetland determinations are based primarily on vegetation and soil characteristics because hydrologic records are usually not available. In this study, plots were located near long-term gaging stations, thus wetland determinations based on plant and soil characteristics could be evaluated at sites where long-term hydrologic conditions were known. Inconsistencies among hydrology, vegetation, and soil determinations were greatest on levee communities of the Ochlockonee and Aucilla River flood plains. Duration of average annual longest flood was almost 2 weeks for both plots. The wetland species list currently used (1991) by the State lacks many ground-cover species common to forested flood plains of north Florida rivers. There were 102 ground-cover species considered upland plants by the State that were present on the nine annually flooded plots of this study. Among them were 34 species that grew in areas continuously flooded for an average of 5 weeks or more each year. Common flood-plain species considered upland plants by the State were: Hypoxis leptocarpa (yellow star-grass), and two woody vines, Brunnichia ovata (ladies' eardrops) and Campsis radicans (trumpet-creeper), which were common in areas flooded continuously for 6 to 9 weeks a year; Sebastiania fruticosa (Sebastian-bush), Chasmanthium laxum (spikegrass), and Panicum dichotomum (panic grass), which typically grew in areas flooded an average of 2 to 3 weeks or more per year; Vitis rotundifolia (muscadine) and Toxicodendron radicans (poison-ivy), usually occurring in areas flooded an average of 1 to 2 weeks a year; and Quercus virginiana (live oak) present most often in areas flooded approximately 1 week a year.

Federal wetland regulations (1989) limited wetland jurisdiction to only those areas that are inundated or saturated during the growing season. However, year-round hydrologic records were chosen in this report to describe the influence of hydrology on vegetation, because saturation, inundation, or flowing water can have a variety of both beneficial and adverse effects on flood-plain vegetation at any time of the year. These effects can occur because: (1) Soil temperatures in north Florida are probably high enough in winter for anaerobic conditions to develop in saturated soils. (2) Many plants in the flood plains of north Florida are active in the nongrowing season and might be adapted to anaerobic conditions in winter. (3) Other effects of standing water, such as decreased light penetration, prevention of seed germination, and protection of seeds from herbivores; and effects of flowing water, such as scouring and deposition of sediments, seed dispersal, and mechanical injury, can occur any time of year.

[an error occurred while processing this directive]