WRIR 95-4271

You can DOWNLOAD THIS REPORT (214 KB) in Portable Document Format (PDF)
The Adobe PDF Reader program is available for free from Adobe.

Yobbi, D.K., 1996, Simulation of Subsurface Storage and Recovery of Treated Effluent Injected in a Saline Aquifer, St. Petersburg, Florida: U.S. Geological Survey Water-Resources Investigations Report 95-4271, 29 p.


The potential for subsurface storage and recovery of treated effluent into the uppermost producing zone (zone A) of the Upper Floridan aquifer in St. Petersburg, Florida, is being studied by the U.S. Geological Survey, in cooperation with the city of St. Petersburg and the Southwest Florida Water Management District. A measure of the success of this practice is the recovery efficiency, or the quantity of water relative to the quantity injected, that can be recovered before the water that is withdrawn fails to meet water-quality standards. The feasibility of this practice will depend upon the ability of the injected zone to receive, store, and discharge the injected fluid.

A cylindrical model of ground-water flow and solute transport, incorporating available data on aquifer properties and water quality, was developed to determine the relation of recovery efficiency to various aquifer and fluid properties that could prevail in the study area. The reference case for testing was a base model considered representative of the saline aquifer underlying St. Petersburg. Parameter variations in the tests represent possible variations in aquifer conditions in the area. The model also was used to study the effect of various cyclic injection and withdrawal schemes on the recovery efficiency of the well and aquifer system.

A base simulation assuming 15 days of injection of effluent at a rate of 1.0 million gallons per day and 15 days of withdrawal at a rate of 1.0 million gallons per day was used as reference to compare changes in various hydraulic and chemical parameters on recovery efficiency. A recovery efficiency of 20 percent was estimated for the base simulation. For practical ranges of hydraulic and fluid properties that could prevail in the study area, the model analysis indicates that (1) the greater the density contrast between injected and resident formation water, the lower the recovery efficiency, (2) recovery efficiency decreases significantly as dispersion increases, (3) high formation permeability favors low recovery efficiencies, and (4) porosity and anisotropy have little effect on recovery efficiencies. In several hypothetical tests, the recovery efficiency fluctuated between about 4 and 76 percent.

The sensitivity of recovery efficiency to variations in the rate and duration of injection (0.25, 0.50, 1.0, and 2.0 million gallons per day) and withdrawal cycles (60, 180, and 365 days) was determined. For a given operational scheme, recovery efficiency increased as the injection and withdrawal rate is increased. Model results indicate that recovery efficiencies of between about 23 and 37 percent can be obtained for different subsurface storage and recovery schemes. Five successive injection, storage, and recovery cycles can increase the recovery efficiency to about 46 to 62 pecent. There is a larger rate of increase at smaller rates than at larger rates. Over the range of variables studied, recovery efficiency improved with successive cycles, increasing rapidly during initial cycles then more slowly at later cycles.

The operation of a single well used for subsurface storage and recovery appears to be technically feasible under moderately favorable conditions; however, the recovery efficiency is highly dependent upon local physical and operational parameters. A combination of hydraulic, chemical, and operational parameters that minimize dispersion and buoyancy flow, maximizes recovery efficiency. Recovery efficiency was optimal where resident formation water density and permeabilities were relatively similar and low.

[an error occurred while processing this directive]